Coping with the Inequity and Inefficiency of the H-Index: A Cross-Disciplinary Empirical Analysis
Abstract
:1. Introduction
- Inefficiency (i.e., biased incentives to the research activity in terms of scientific achievements) is managed by focusing on articles instead of publications (i.e., publications include non-peer reviewed research) (Inefficiency a, Ifa hereafter) and by using net instead of gross citations (i.e., gross citations include co-authors’ reciprocal citations) (Inefficiency b, Ifb hereafter). In terms of H-index improvements, ∆H1 = H1 − H2 deals with the overvaluation of possibly non-original research such as reviews, proceedings, and editorials, where H1 = H-index based on publications and H2 = H-index based on articles; ∆H2 = H2 − H3 deals with the overemphasis put on co-authors’ reciprocal citations as a measure of actual knowledge diffusion, where H3 = H-index based on net citations for articles.
- Inequity (i.e., biased rankings in favour of some authors and some disciplines) is managed by using a per-capita H-index to account for the different co-authorship practices prevailing in different disciplines (i.e., more co-authors in some disciplines) (Inequity a, Iqa hereafter) and by using a per-year H-index to account for the different citation periods related to authors with more scientific experience (i.e., they can rely on a longer citation period) (Inequity b, Iqb hereafter). In terms of H-index improvements, ∆H3 = H3 − H4 deals with the huge differences in the number of co-authors and thus in the number of articles in favour of some disciplines, where H4 = net per-capita H-index based on articles; ∆H4 = H4 − H5 deals with the obviously large number of citations received by researchers with more experience and thus the likely worse assessment of the scientific production in disfavour of researchers with less experience, where H5 = net per-capita per-year H-index based on articles.
- Does each single H-index improvement ∆Hh properly solve inefficiency and inequity issues?
- Does each single H-index improvement ∆Hh spread inefficiency and inequity issues uniformly across disciplines Dj and subjects Sk?
- Can any discipline Dj and subject Sk be distinguished from other disciplines and subjects, respectively, net of ∆Hh?
- Does the comprehensive H-index improvement H1–H5 properly solve inefficiency and inequity issues?
- Does the comprehensive H-index improvement H1–H5 spread inefficiency and inequity issues uniformly across disciplines Dj and subjects Sk?
- Can any discipline Dj and subject Sk be distinguished from other disciplines and subjects, respectively, net of H1–H5?
- Are disciplines Dj and subjects Sk characterised by similar parametric distributions for H5 (i.e., plots have similar shapes) and by similar right tails (i.e., similar percentages of authors with H5 ≥ 1, H5 ≥ 1.5, H5 ≥ 2, H5 ≥ 2.5, H5 ≥ 3)?
2. Measuring Inefficiency and Inequity by H-Indexes
- Inefficiency a (i.e., many publications other than articles for each author):
- Inefficiency b (i.e., many co-authors’ reciprocal citations for each author):
- Inequity a (i.e., more co-authors in some disciplines):
- Inequity b (i.e., more citations for authors with more experience):
3. Constructing the Dataset
4. Results
4.1. ANOVA and Linear Regressions
- Inefficiency a (i.e., many publications other than articles for each author):
- Inefficiency b (i.e., many co-authors’ reciprocal citations for each author):
- Inequity a (i.e., more co-authors in some disciplines):
- Inequity b (i.e., more citations for authors with more experience):
4.1.1. Inefficiency a (Ifa) (Many Publications Other Than Articles)
4.1.2. Inefficiency b (Ifb) (Many Co-Authors’ Reciprocal Citations)
4.1.3. Inequity a (Iqa) (More Co-Authors in Some Disciplines)
4.1.4. Inequity b (Iqb) (More Citations for Authors with More Experience)
4.1.5. Overall Bias including All Inefficiency and Inequity
4.2. Maximum Likelihood Fittings
5. Discussion
- Impact factors [21]. However, this feature is misleading, since a paper poorly cited but published in a high-impact journal should be punished rather than rewarded, since it wasted a popular stage.
- Gender differences [22]. However, this feature is irrelevant in making disciplines and subjects homogeneous.
- Negative citations [6]. However, this bias is likely to be negligible, since papers criticising a paper do not need to quote it many times.
- Country differences [26]. However, this feature is irrelevant in making disciplines and subjects homogeneous.
- Co-authorship networks [27]. However, this feature is misleading in focusing on inefficiency and inequity across authors in different disciplines and subjects.
- H-index dynamics. In fact, other papers focused on the same feature [11].
- Linear regressions. However, non-linear estimations require additional assumptions (e.g., a Poisson distribution based on random and over-time independent citations for over-time constant authors) and make interpretations of results more complicated (e.g., impacts of alternative policies ∆Hh and different disciplines Dj or subjects Sk are non-additive) [6].
- Gamma distributions. In fact, other papers used the same distribution [24].
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The List of Disciplines
10-Multidisciplinary |
11-Agricultural and Biological Sciences |
12-Arts and Humanities |
13-Biochemistry, Genetics, and Molecular Biology |
14-Business, Management, and Accounting |
15-Chemical Engineering |
16-Chemistry |
17-Computer Science |
18-Decision Sciences |
19-Earth and Planetary Sciences |
20-Economics, Econometrics, and Finance |
21-Energy |
22-Engineering |
23-Environmental Science |
24-Immunology and Microbiology |
25-Materials Science |
26-Mathematics |
27-Medicine |
28-Neuroscience |
29-Nursing |
30-Pharmacology, Toxicology, and Pharmaceutics |
31-Physics and Astronomy |
32-Psychology |
33-Sociology |
34-Veterinary |
35-Dentistry |
36-Health Professions |
Appendix B. Summary Statistics for Disciplines
Dj | Npub | Nart | Naut | Ngro | Nnet |
---|---|---|---|---|---|
11 | 5.124 (13.123) | 5.113 (13.079) | 5.742 (4.859) | 4.757 (7.608) | 4.663 (7.504) |
1 [1–206] | 1 [1–206] | 5 [1–73.600] | 2 [0–62.250] | 2 [0–61.375] | |
12 | 1.866 (1.980) | 1.866 (1.980) | 1.565 (1.322) | 1.093 (2.847) | 1.086 (2.813) |
1 [1–11] | 1 [1–11] | 1 [1–8] | 0 [0–19.600] | 0 [0–19.400] | |
13 | 5.717 (12.506) | 5.660 (12.390) | 10.014 (21.699) | 13.223 (27.822) | 12.919 (27.217) |
2 [1–172] | 2 [1–170] | 7.263 [1–461] | 5 [0–358] | 4.800 [0–358] | |
14 | 3.080 (4.737) | 3.080 (4.737) | 5.279 (24.033) | 7.894 (23.229) | 7.854 (23.204) |
1 [1–34] | 1 [1–34] | 3 [1–228] | 2 [0–209] | 2 [0–209] | |
15 | 2.989 (5.624) | 2.989 (5.624) | 4.447 (1.637) | 5.303 (11.145) | 5.267 (11.144) |
1 [1–40] | 1 [1–40] | 4.364 [1–10] | 1 [0–66] | 1 [0–66] | |
16 | 6.083 (12.779) | 6.055 (12.718) | 5.471 (2.707) | 7.453 (15.998) | 7.383 (15.959) |
2 [1–138] | 2 [1–138] | 5 [1–51] | 3 [0–256] | 2.975 [0–256] | |
17 | 3.843 (7.803) | 3.817 (7.793) | 4.121 (2.400) | 6.019 (14.562) | 5.988 (14.504) |
1 [1–74] | 1 [1–74] | 4 [1–24] | 2 [0–130] | 1.979 [0–130] | |
18 | 4.800 (6.870) | 4.800 (6.870) | 2.169 (0.289) | 11.676 (7.419) | 11.151 (7.600) |
2 [1–17] | 2 [1–17] | 2 [2–2.667] | 14 [2–19] | 12.667 [2–19] | |
19 | 5.452 (12.361) | 5.449 (12.333) | 6.793 (12.239) | 6.348 (17.586) | 6.107 (17.251) |
2 [1–122] | 2 [1–121] | 5 [1–206.500] | 2.267 [0–232] | 2.142 [0–231.500] | |
20 | 3.605 (5.497) | 3.605 (5.497) | 2.484 (0.965) | 2.769 (4.889) | 2.735 (4.829) |
2 [1–35] | 2 [1–35] | 2.229 [1–5] | 1 [0–28.500] | 1 [0–28.500] | |
21 | 2.053 (2.371) | 2.053 (2.371) | 4.167 (2.004) | 4.541 (6.729) | 4.526 (6.690) |
1 [1–16] | 1 [1–16] | 4 [1–8.500] | 1 [0–31] | 1 [0–31] | |
22 | 3.999 (12.250) | 3.984 (12.215) | 4.121 (3.046) | 3.187 (6.608) | 3.150 (6.566) |
1 [1–240] | 1 [1–240] | 4 [1–70.250] | 1 [0–54.250] | 1 [0–54.250] | |
23 | 4.940 (8.694) | 4.928 (8.671) | 5.046 (3.788) | 6.189 (10.212) | 6.101 (10.169) |
1 [1–52] | 1 [1–52] | 4.750 [1–54] | 2.500 [0–86] | 2.500 [0–86] | |
24 | 3.495 (4.639) | 3.495 (4.639) | 7.822 (3.837) | 10.456 (17.103) | 10.312 (17.036) |
1 [1–25] | 1 [1–25] | 7.500 [2–34] | 6 [0–106] | 5.750 [0–106] | |
25 | 5.165 (10.605) | 5.143 (10.572) | 5.452 (2.459) | 6.695 (20.817) | 6.632 (20.671) |
2 [1–120] | 2 [1–120] | 5 [1–31] | 1.545 [0–221.583] | 1.500 [0–219.833] | |
26 | 4.797 (9.797) | 4.797 (9.797) | 2.689 (1.072) | 3.048 (9.191) | 2.959 (9.144) |
2 [1–95] | 2 [1–95] | 2.667 [1–8] | 0.500 [0–97] | 0.500 [0–97] | |
27 | 5.180 (14.520) | 5.125 (14.247) | 13.161 (75.762) | 8.222 (25.264) | 8.093 (24.715) |
1 [1–444] | 1 [1–435] | 6.500 [1–2060] | 2.400 [0–988] | 2.333 [0–965] | |
28 | 5.271 (7.440) | 5.250 (7.384) | 6.175 (2.885) | 13.877 (23.233) | 13.804 (23.237) |
2 [1–36] | 2 [1–36] | 6 [1–18] | 6 [0–123] | 6 [0–123] | |
29 | 1.867 (2.134) | 1.867 (2.134) | 2.807 (1.964) | 2.622 (4.680) | 2.622 (4.680) |
1 [1–9] | 1 [1–9] | 3 [1–7] | 0 [0–15] | 0 [0–15] | |
30 | 2.562 (3.894) | 2.550 (3.894) | 6.072 (2.479) | 3.463 (5.216) | 3.449 (5.211) |
1 [1–23] | 1 [1–23] | 5.433 [2–14.500] | 1.167 [0–30.500] | 1.167 [0–30.500] | |
31 | 9.992 (35.266) | 9.948 (35.239) | 69.653 (323.694) | 5.945 (11.936) | 5.515 (11.206) |
2 [1–468] | 2 [1–468] | 5.556 [1–2837.009] | 2 [0–110] | 2 [0–110] | |
32 | 2.948 (3.783) | 2.939 (3.768) | 4.938 (11.434) | 9.726 (26.189) | 9.680 (26.190) |
1 [1–28] | 1 [1–28] | 4 [1–124] | 3.778 [0–212] | 3.333 [0–212] | |
33 | 2.899 (4.235) | 2.896 (4.221) | 2.404 (1.830) | 3.642 (7.926) | 3.606 (7.890) |
1 [1–39] | 1 [1–39] | 2 [1–22] | 1 [0–99] | 1 [0–99] | |
34 | 2.931 (3.973) | 2.914 (3.975) | 5.890 (2.517) | 3.667 (4.845) | 3.644 (4.810) |
2 [1–27] | 2 [1–27] | 5.500 [2–16] | 2 [0–20.500] | 2 [0–20] | |
35 | 4.113 (7.992) | 4.032 (7.735) | 5.532 (2.645) | 6.185 (8.875) | 6.097 (8.713) |
1 [1–42] | 1 [1–42] | 5 [1–19] | 3.417 [0–49] | 3.417 [0–49] |
Dj | H1 | H2 | H3 | H4 | H5 |
---|---|---|---|---|---|
11 | 1.761 (2.677) | 1.761 (2.677) | 1.718 (2.517) | 0.443 (0.748) | 0.207 (0.306) |
1 [0–27] | 1 [0–27] | 1 [0–24] | 0.236 [0–6] | 0.125 [0–3.167] | |
12 | 0.549 (0.905) | 0.549 (0.905) | 0.549 (0.905) | 0.418 (0.725) | 0.168 (0.328) |
0 [0–4] | 0 [0–4] | 0 [0–4] | 0 [0–3] | 0 [0–1.800] | |
13 | 2.615 (4.329) | 2.615 (4.329) | 2.564 (4.020) | 0.418 (0.666) | 0.227 (0.295) |
1 [0–72] | 1 [0–72] | 1 [0–60] | 0.200 [0–6.479] | 0.143 [0–2.853] | |
14 | 1.341 (1.653) | 1.341 (1.653) | 1.318 (1.623) | 0.597 (0.812) | 0.352 (0.388) |
1 [0–9] | 1 [0–9] | 1 [0–9] | 0.333 [0–4.333] | 0.250 [0–1.500] | |
15 | 1.022 (1.282) | 1.022 (1.282) | 1 (1.256) | 0.252 (0.350) | 0.141 (0.174) |
1 [0–7] | 1 [0–7] | 1 [0–7] | 0.167 [0–1.667] | 0.083 [0–0.750] | |
16 | 2.216 (3.205) | 2.216 (3.205) | 2.189 (3.144) | 0.508 (0.801) | 0.261 (0.349) |
1 [0–21] | 1 [0–21] | 1 [0–21] | 0.250 [0–5.767] | 0.167 [0–2.250] | |
17 | 1.463 (2.067) | 1.463 (2.067) | 1.455 (2.054) | 0.467 (0.733) | 0.249 (0.349) |
1 [0–16] | 1 [0–16] | 1 [0–16] | 0.250 [0–5.417] | 0.167 [0–2.917] | |
18 | 2.600 (2.510) | 2.600 (2.510) | 2.400 (2.074) | 1.550 (1.681) | 0.679 (0.471) |
2 [1–7] | 2 [1–7] | 2 [1–6] | 1 [0.500–4.500] | 0.500 [0.250–1.375] | |
19 | 1.892 (2.660) | 1.892 (2.660) | 1.795 (2.360) | 0.437 (0.642) | 0.216 (0.275) |
1 [0–17] | 1 [0–17] | 1 [0–16] | 0.226 [0–5.083] | 0.125 [0–1.833] | |
20 | 1.302 (1.802) | 1.302 (1.802) | 1.302 (1.802) | 0.621 (0.927) | 0.287 (0.375) |
1 [0–10] | 1 [0–10] | 1 [0–10] | 0.500 [0–6] | 0.167 [0–1.800] | |
21 | 0.982 (1.232) | 0.982 (1.232) | 0.982 (1.232) | 0.322 (0.620) | 0.238 (0.447) |
1 [0–8] | 1 [0–8] | 1 [0–8] | 0.200 [0–4] | 0.125 [0–3] | |
22 | 1.101 (1.769) | 1.101 (1.769) | 1.088 (1.742) | 0.344 (0.588) | 0.181 (0.291) |
1 [0–22] | 1 [0–22] | 1 [0–22] | 0.200 [0–5.333] | 0.067 [0–2.889] | |
23 | 1.851 (2.658) | 1.851 (2.658) | 1.826 (2.587) | 0.529 (1.096) | 0.276 (0.464) |
1 [0–20] | 1 [0–20] | 1 [0–20] | 0.250 [0–12.417] | 0.167 [0–5.333] | |
24 | 2.103 (2.172) | 2.103 (2.172) | 2.093 (2.161) | 0.353 (0.419) | 0.187 (0.177) |
1 [0–12] | 1 [0–12] | 1 [0–12] | 0.200 [0–3] | 0.125 [0–0.852] | |
25 | 1.764 (2.603) | 1.764 (2.603) | 1.739 (2.527) | 0.387 (0.573) | 0.203 (0.279) |
1 [0–17] | 1 [0–17] | 1 [0–16] | 0.200 [0–4.267] | 0.125 [0–1.834] | |
26 | 1.165 (1.629) | 1.165 (1.629) | 1.135 (1.561) | 0.496 (0.687) | 0.228 (0.309) |
1 [0–7] | 1 [0–7] | 1 [0–7] | 0.333 [0–4] | 0.167 [0–2] | |
27 | 1.935 (3.177) | 1.935 (3.177) | 1.908 (3.059) | 0.330 (0.559) | 0.173 (0.248) |
1 [0–43] | 1 [0–43] | 1 [0–39] | 0.167 [0–8.367] | 0.111 [0–4.111] | |
28 | 2.469 (2.667) | 2.469 (2.667) | 2.458 (2.655) | 0.568 (0.737) | 0.301 (0.305) |
1 [0–11] | 1 [0–11] | 1 [0–11] | 0.250 [0–3.667] | 0.200 [0–1.583] | |
29 | 0.467 (0.834) | 0.467 (0.834) | 0.467 (0.834) | 0.262 (0.766) | 0.130 (0.312) |
0 [0–3] | 0 [0–3] | 0 [0–3] | 0 [0–3] | 0 [0–1.200] | |
30 | 1.062 (1.444) | 1.062 (1.444) | 1.062 (1.444) | 0.221 (0.303) | 0.119 (0.168) |
1 [0–11] | 1 [0–11] | 1 [0–11] | 0.200 [0–1.667] | 0.065 [0–1] | |
31 | 2.490 (4.351) | 2.490 (4.351) | 2.353 (3.924) | 0.448 (0.675) | 0.212 (0.287) |
1 [0–42] | 1 [0–42] | 1 [0–37] | 0.250 [0–6.500] | 0.125 [0–2.033] | |
32 | 1.513 (1.564) | 1.513 (1.564) | 1.496 (1.530) | 0.529 (0.673) | 0.299 (0.343) |
1 [0–7] | 1 [0–7] | 1 [0–7] | 0.333 [0–5] | 0.200 [0–2.667] | |
33 | 1.188 (1.629) | 1.188 (1.629) | 1.179 (1.598) | 0.649 (0.873) | 0.343 (0.466) |
1 [0–12] | 1 [0–12] | 1 [0–12] | 0.333 [0–5.083] | 0.179 [0–2.643] | |
34 | 1.190 (1.177) | 1.190 (1.177) | 1.190 (1.177) | 0.282 (0.377) | 0.153 (0.198) |
1 [0–5] | 1 [0–5] | 1 [0–5] | 0.167 [0–1.833] | 0.094 [0–1] | |
35 | 1.871 (3.144) | 1.871 (3.144) | 1.823 (2.945) | 0.389 (0.645) | 0.218 (0.344) |
1 [0–15] | 1 [0–15] | 1 [0–14] | 0.200 [0–3.351] | 0.118 [0–2.343] |
Appendix C. Additional Results for Disciplines
Nobs | Npub | Nart | ∆ | % | |
---|---|---|---|---|---|
Discipline 11 | 691 | 3541 | 3533 | 8 | 0.23 |
Discipline 12 | 82 | 153 | 153 | 0 | 0.00 |
Discipline 13 | 860 | 4917 | 4868 | 49 | 1.00 |
Discipline 14 | 88 | 271 | 271 | 0 | 0.00 |
Discipline 15 | 91 | 272 | 272 | 0 | 0.00 |
Discipline 16 | 726 | 4416 | 4396 | 20 | 0.45 |
Discipline 17 | 268 | 1030 | 1023 | 7 | 0.68 |
Discipline 18 | 5 | 24 | 24 | 0 | 0.00 |
Discipline 19 | 332 | 1810 | 1809 | 1 | 0.06 |
Discipline 20 | 86 | 310 | 310 | 0 | 0.00 |
Discipline 21 | 57 | 117 | 117 | 0 | 0.00 |
Discipline 22 | 811 | 3243 | 3231 | 12 | 0.37 |
Discipline 23 | 235 | 1161 | 1158 | 3 | 0.26 |
Discipline 24 | 107 | 374 | 374 | 0 | 0.00 |
Discipline 25 | 449 | 2319 | 2309 | 10 | 0.43 |
Discipline 26 | 133 | 638 | 638 | 0 | 0.00 |
Discipline 27 | 3562 | 18,450 | 18,254 | 196 | 1.06 |
Discipline 28 | 96 | 506 | 504 | 2 | 0.40 |
Discipline 29 | 15 | 28 | 28 | 0 | 0.00 |
Discipline 30 | 80 | 205 | 204 | 1 | 0.49 |
Discipline 31 | 631 | 6305 | 6277 | 28 | 0.44 |
Discipline 32 | 115 | 339 | 338 | 1 | 0.29 |
Discipline 33 | 357 | 1035 | 1034 | 1 | 0.10 |
Discipline 34 | 58 | 170 | 169 | 1 | 0.59 |
Discipline 35 | 62 | 255 | 250 | 5 | 1.96 |
Estimate | Std. Error | t Value | Prob(>|t|) | Significance | |
---|---|---|---|---|---|
∆H2 = H2 − H3 | 1.997354 | 0.033426 | 59.755 | <2 × 10−16 | *** |
Discipline 11 | 0.007502 | 0.035251 | 0.213 | 0.831 | |
Discipline 12 | 0.007289 | 0.102244 | 0.071 | 0.943 | |
Discipline 13 | 0.201967 | 0.031618 | 6.388 | 1.76 × 10−10 | *** |
Discipline 14 | −0.005015 | 0.098700 | −0.051 | 0.959 | |
Discipline 15 | −0.007551 | 0.097059 | −0.078 | 0.938 | |
Discipline 16 | 0.015172 | 0.034374 | 0.441 | 0.659 | |
Discipline 17 | 0.016534 | 0.056556 | 0.292 | 0.770 | |
Discipline 18 | 0.126019 | 0.414111 | 0.304 | 0.761 | |
Discipline 19 | 0.049192 | 0.050915 | 0.966 | 0.334 | |
Discipline 20 | 0.033797 | 0.099838 | 0.339 | 0.735 | |
Discipline 21 | 0.014254 | 0.122633 | 0.116 | 0.907 | |
Discipline 22 | 0.010229 | 0.032514 | 0.315 | 0.753 | |
Discipline 23 | 0.036683 | 0.060402 | 0.607 | 0.544 | |
Discipline 24 | 0.125332 | 0.089507 | 1.400 | 0.161 | |
Discipline 25 | 0.014624 | 0.043702 | 0.335 | 0.738 | |
Discipline 26 | 0.028125 | 0.080289 | 0.350 | 0.726 | |
Discipline 27 | 0.073994 | 0.015540 | 4.762 | 1.95 × 10−06 | *** |
Discipline 28 | 0.052234 | 0.094496 | 0.553 | 0.580 | |
Discipline 29 | 0.000000 | 0.239056 | 0.000 | 1.000 | |
Discipline 30 | 0.014238 | 0.103514 | 0.138 | 0.891 | |
Discipline 31 | 0.157578 | 0.037138 | 4.243 | 2.23 × 10−05 | *** |
Discipline 32 | 0.011230 | 0.086339 | 0.130 | 0.897 | |
Discipline 33 | 0.019254 | 0.049002 | 0.393 | 0.694 | |
Discipline 34 | 0.023276 | 0.121571 | 0.191 | 0.848 | |
Discipline 35 | −0.009052 | 0.117595 | −0.077 | 0.939 |
Estimate | Std. Error | t Value | Prob(>|t|) | Significance | |
---|---|---|---|---|---|
Naut | 0.01051 | 0.00207 | 5.077 | 3.90 × 10−07 | *** |
∆H3 = H3 − H4 | 1.61270 | 0.08130 | 19.836 | <2 × 10−16 | *** |
Discipline 11 | 2.54715 | 0.73167 | 3.481 | 0.000501 | *** |
Discipline 12 | 0.85837 | 2.10310 | 0.408 | 0.683176 | |
Discipline 13 | 9.35233 | 0.67187 | 13.920 | <2 × 10−16 | *** |
Discipline 14 | 6.63520 | 2.03094 | 3.267 | 0.001090 | ** |
Discipline 15 | 4.01396 | 1.99727 | 2.010 | 0.044488 | * |
Discipline 16 | 4.61528 | 0.71962 | 6.414 | 1.49 × 10−10 | *** |
Discipline 17 | 4.35071 | 1.16601 | 3.731 | 0.000192 | *** |
Discipline 18 | 9.75739 | 8.51709 | 1.146 | 0.251978 | |
Discipline 19 | 3.84524 | 1.05085 | 3.659 | 0.000254 | *** |
Discipline 20 | 1.61078 | 2.05432 | 0.784 | 0.433004 | |
Discipline 21 | 3.41772 | 2.52302 | 1.355 | 0.175571 | |
Discipline 22 | 1.90671 | 0.67139 | 2.840 | 0.004521 | ** |
Discipline 23 | 3.95753 | 1.24667 | 3.174 | 0.001506 | ** |
Discipline 24 | 7.42367 | 1.84637 | 4.021 | 5.85 × 10−05 | *** |
Discipline 25 | 4.39420 | 0.90529 | 4.854 | 1.23 × 10−06 | *** |
Discipline 26 | 1.89982 | 1.65214 | 1.150 | 0.250206 | |
Discipline 27 | 5.40924 | 0.34334 | 15.755 | <2 × 10−16 | *** |
Discipline 28 | 10.69129 | 1.94963 | 5.484 | 4.27 × 10−08 | *** |
Discipline 29 | 2.26224 | 4.91721 | 0.460 | 0.645479 | |
Discipline 30 | 2.02776 | 2.13027 | 0.952 | 0.341183 | |
Discipline 31 | 1.70973 | 0.78243 | 2.185 | 0.028901 | * |
Discipline 32 | 8.06915 | 1.77757 | 4.539 | 5.71 × 10−06 | *** |
Discipline 33 | 2.72659 | 1.00882 | 2.703 | 0.006889 | ** |
Discipline 34 | 2.11780 | 2.50168 | 0.847 | 0.397266 | |
Discipline 35 | 3.72756 | 2.42136 | 1.539 | 0.123726 |
Estimate | Std. Error | t Value | Prob(>|t|) | Significance | |
---|---|---|---|---|---|
Naut | 0.017954 | 0.002029 | 8.847 | <2 × 10−16 | *** |
Aaut | −8.859996 | 0.406800 | −21.780 | <2 × 10−16 | *** |
∆H4 = H4 − H5 | −0.450222 | 0.497463 | −0.905 | 0.365468 | |
Discipline 11 | 8.897595 | 0.765770 | 11.619 | <2 × 10−16 | *** |
Discipline 12 | 5.924150 | 2.109108 | 2.809 | 0.004982 | ** |
Discipline 13 | 17.224180 | 0.693190 | 24.848 | <2 × 10−16 | *** |
Discipline 14 | 12.400369 | 2.035827 | 6.091 | 1.16 × 10−09 | *** |
Discipline 15 | 10.300187 | 2.000073 | 5.150 | 2.66 × 10−07 | *** |
Discipline 16 | 11.911298 | 0.754831 | 15.780 | <2 × 10−16 | *** |
Discipline 17 | 10.607281 | 1.186905 | 8.937 | <2 × 10−16 | *** |
Discipline 18 | 13.276112 | 8.474326 | 1.567 | 0.117234 | |
Discipline 19 | 10.033894 | 1.066729 | 9.406 | <2 × 10−16 | *** |
Discipline 20 | 6.962199 | 2.061293 | 3.378 | 0.000734 | *** |
Discipline 21 | 9.619067 | 2.518869 | 3.819 | 0.000135 | *** |
Discipline 22 | 7.704620 | 0.710005 | 10.852 | <2 × 10−16 | *** |
Discipline 23 | 10.611399 | 1.265151 | 8.387 | <2 × 10−16 | *** |
Discipline 24 | 13.973116 | 1.841804 | 7.587 | 3.58 × 10−14 | *** |
Discipline 25 | 11.471457 | 0.932967 | 12.296 | <2 × 10−16 | *** |
Discipline 26 | 7.228607 | 1.662872 | 4.347 | 1.39 × 10−05 | *** |
Discipline 27 | 12.389992 | 0.401181 | 30.884 | <2 × 10−16 | *** |
Discipline 28 | 17.874425 | 1.949225 | 9.170 | <2 × 10−16 | *** |
Discipline 29 | 8.537868 | 4.894441 | 1.744 | 0.081120 | |
Discipline 30 | 8.369426 | 2.130282 | 3.929 | 8.60 × 10−05 | *** |
Discipline 31 | 8.540913 | 0.809086 | 10.556 | <2 × 10−16 | *** |
Discipline 32 | 13.547450 | 1.781005 | 7.607 | 3.07 × 10−14 | *** |
Discipline 33 | 7.945013 | 1.041880 | 7.626 | 2.65 × 10−14 | *** |
Discipline 34 | 7.873618 | 2.494781 | 3.156 | 0.001604 | ** |
Discipline 35 | 10.362004 | 2.414967 | 4.291 | 1.80 × 10−05 | *** |
Estimate | Std. Error | t Value | Prob(>|t|) | Significance | |
---|---|---|---|---|---|
Nnet | 1.0156053 | 0.0005899 | 1721.619 | <2 × 10−16 | *** |
Naut | 0.0010315 | 0.0001243 | 8.295 | <2 × 10−16 | *** |
Aaut | 0.1927100 | 0.0283680 | 6.793 | 1.19 × 10−11 | *** |
∆H5 = H1 − H5 | 0.1597733 | 0.0044277 | 36.085 | <2 × 10−16 | *** |
Discipline 11 | −0.3794002 | 0.0509842 | −7.442 | 1.11 × 10−13 | *** |
Discipline 12 | −0.2588000 | 0.2001352 | −1.293 | 0.196009 | |
Discipline 13 | −0.4355088 | 0.0471928 | −9.228 | <2 × 10−16 | *** |
Discipline 14 | −0.4084144 | 0.1377048 | −2.966 | 0.003028 | ** |
Discipline 15 | −0.3978104 | 0.1484945 | −2.679 | 0.007402 | ** |
Discipline 16 | −0.5628439 | 0.0509699 | −11.043 | <2 × 10−16 | *** |
Discipline 17 | −0.4372683 | 0.0803038 | −5.445 | 5.35 × 10−08 | *** |
Discipline 18 | 0.0037988 | 0.4895416 | 0.008 | 0.993809 | |
Discipline 19 | −0.2416887 | 0.0723745 | −3.339 | 0.000844 | *** |
Discipline 20 | −0.3420827 | 0.1457847 | −2.346 | 0.018978 | * |
Discipline 21 | −0.3647070 | 0.1761518 | −2.070 | 0.038450 | * |
Discipline 22 | −0.3409320 | 0.0521047 | −6.543 | 6.44 × 10−11 | *** |
Discipline 23 | −0.4393962 | 0.0855634 | −5.135 | 2.89 × 10−07 | *** |
Discipline 24 | −0.4430399 | 0.1136581 | −3.898 | 9.79 × 10−05 | *** |
Discipline 25 | −0.5087248 | 0.0650363 | −7.822 | 5.94 × 10−15 | *** |
Discipline 26 | −0.2446781 | 0.1261528 | −1.940 | 0.052475 | |
Discipline 27 | −0.4763461 | 0.0286499 | −16.626 | <2 × 10−16 | *** |
Discipline 28 | −0.6404646 | 0.1211245 | −5.288 | 1.28 × 10−07 | *** |
Discipline 29 | −0.3654419 | 0.4895745 | −0.746 | 0.455421 | |
Discipline 30 | −0.3662411 | 0.1509943 | −2.426 | 0.015311 | * |
Discipline 31 | −0.1807721 | 0.0541289 | −3.340 | 0.000843 | *** |
Discipline 32 | −0.4443098 | 0.1151165 | −3.860 | 0.000115 | *** |
Discipline 33 | −0.3106706 | 0.0743621 | −4.178 | 2.98 × 10−05 | *** |
Discipline 34 | −0.3491000 | 0.1713866 | −2.037 | 0.041695 | * |
Discipline 35 | −0.4474059 | 0.1623079 | −2.757 | 0.005857 | ** |
H5 ≥ 1 (0) | H5 ≥ 1.5 (00) | H5 ≥ 2 (000) | H5 ≥ 2.5 (0000) | H5 ≥ 3 (000000) | |
---|---|---|---|---|---|
Discipline 11 | 0.0214195000 | 0.0031949700 | 0.0004244090 | 0.0000526374 | 0.0000006237 |
Discipline 12 | 0.1132610000 | 0.0338257000 | 0.0089426600 | 0.0021933800 | 0.0005108530 |
Discipline 13 | 0.0212303000 | 0.0030915600 | 0.0003996500 | 0.0000481475 | 0.0000005535 |
Discipline 14 | 0.1064940000 | 0.0262324000 | 0.0055058300 | 0.0010480800 | 0.0001867700 |
Discipline 15 | 0.0026320400 | 0.0000941238 | 0.0000002803 | 0.0000000075 | 0.0000000001 |
Discipline 16 | 0.0537398000 | 0.0124615000 | 0.0025899100 | 0.0005038630 | 0.0000937419 |
Discipline 17 | 0.0481825000 | 0.0104430000 | 0.0020212300 | 0.0003654780 | 0.0000631270 |
Discipline 18 | 0.2570370000 | 0.0838338000 | 0.0223803000 | 0.0052672800 | 0.0011368700 |
Discipline 19 | 0.0252170000 | 0.0039244700 | 0.0005412270 | 0.0000694763 | 0.0000008500 |
Discipline 20 | 0.0994215000 | 0.0291084000 | 0.0075999500 | 0.0018496200 | 0.0004288500 |
Discipline 21 | 0.0624973000 | 0.0170231000 | 0.0042264200 | 0.0009918090 | 0.0002238670 |
Discipline 22 | 0.0341036000 | 0.0064675700 | 0.0010983700 | 0.0001746360 | 0.0000265688 |
Discipline 23 | 0.0722331000 | 0.0192680000 | 0.0046193400 | 0.0010378100 | 0.0002230200 |
Discipline 24 | 0.0024275000 | 0.0001010910 | 0.0000003611 | 0.0000000118 | 0.0000000003 |
Discipline 25 | 0.0257603000 | 0.0041443800 | 0.0005931350 | 0.0000791911 | 0.0000100960 |
Discipline 26 | 0.0451340000 | 0.0066194500 | 0.0008072040 | 0.0000881770 | 0.0000008954 |
Discipline 27 | 0.0099479400 | 0.0010265500 | 0.0000940477 | 0.0000008035 | 0.0000000655 |
Discipline 28 | 0.0317879000 | 0.0045656300 | 0.0005621200 | 0.0000631578 | 0.0000006678 |
Discipline 29 | 0.0898358000 | 0.0286542000 | 0.0083499600 | 0.0023013000 | 0.0006097310 |
Discipline 30 | 0.0005730750 | 0.0000106334 | 0.0000000167 | 0.0000000002 | 0.0000000000 |
Discipline 31 | 0.0426779000 | 0.0113684000 | 0.0028147400 | 0.0006666810 | 0.0001531040 |
Discipline 32 | 0.0576213000 | 0.0127117000 | 0.0024768200 | 0.0004478000 | 0.0000769826 |
Discipline 33 | 0.2019380000 | 0.0829548000 | 0.0307522000 | 0.0106768000 | 0.0035321700 |
Discipline 34 | 0.0032719200 | 0.0001645480 | 0.0000007143 | 0.0000000284 | 0.0000000010 |
Discipline 35 | 0.0258130000 | 0.0041717700 | 0.0006001260 | 0.0000805640 | 0.0000103297 |
Appendix D. Additional Results Based on a Quasi-Poisson Distribution
DF | Deviance | % Tot | p-Value | Significance | |
---|---|---|---|---|---|
∆H1 = H1 − H2 | |||||
Disciplines | 24 | 171.05 | 6.09 | 3.52 × 10−08 | *** |
Residual | 9972 | 2636.93 | 93.91 |
DF | Deviance | % Tot | p-Value | Significance | |
---|---|---|---|---|---|
∆H1 = H1 − H2 | |||||
Subjects | 3 | 93.90 | 3.34 | 1.71 × 10−07 | *** |
Residual | 9993 | 2714.08 | 96.66 |
DF | Deviance | % Tot | p-Value | Significance | |
---|---|---|---|---|---|
∆H2 = H2 − H3 | 1 | 103,349.22 | 62.60 | 2.20 × 10−16 | *** |
Disciplines | 24 | 5414.82 | 3.28 | 2.20 × 10−16 | *** |
Residuals | 9971 | 56,328.76 | 34.12 |
DF | Deviance | % Tot | p-Value | Significance | |
---|---|---|---|---|---|
∆H2 = H2 − H3 | 1 | 103,349.22 | 62.60 | 2.20 × 10−16 | *** |
Subjects | 3 | 755.67 | 0.46 | 0.0059 | ** |
Residual | 9992 | 60,987.91 | 36.94 |
DF | Deviance | % Tot | p-Value | Significance | |
---|---|---|---|---|---|
Naut | 1 | 6934.91 | 1.03 | 1.57 × 10−09 | *** |
∆H3 = H3 − H4 | 1 | 134,670.56 | 20.04 | 2.20 × 10−16 | *** |
Disciplines | 24 | 29,260.17 | 4.35 | 2.20 × 10−16 | *** |
Residual | 9970 | 501,264.00 | 74.58 |
DF | Deviance | % Tot | p-Value | Significance | |
---|---|---|---|---|---|
Naut | 1 | 6934.91 | 1.03 | 1.57 × 10−09 | *** |
∆H3 = H3 − H4 | 1 | 134,670.56 | 20.04 | 2.20 × 10−16 | *** |
Subjects | 3 | 8877.90 | 1.32 | 2.20 × 10−16 | *** |
Residual | 9991 | 521,646.30 | 77.61 |
DF | Deviance | % Tot | p-Value | Significance | |
---|---|---|---|---|---|
Naut | 1 | 6934.91 | 1.03 | 4.98 × 10−13 | *** |
Aaut | 1 | 26,246.13 | 3.90 | 2.20 × 10−16 | *** |
∆H4 = H4 − H5 | 1 | 44,367.96 | 6.60 | 2.20 × 10−16 | *** |
Disciplines | 24 | 66,316.77 | 9.87 | 2.20 × 10−16 | *** |
Residual | 9969 | 528,263.88 | 78.60 |
DF | Deviance | % Tot | p-Value | Significance | |
---|---|---|---|---|---|
Naut | 1 | 6934.91 | 1.03 | 8.56× 10−12 | *** |
Aaut | 1 | 26,246.13 | 3.90 | 2.20 × 10−16 | *** |
∆H4 = H4 − H5 | 1 | 44,367.96 | 6.60 | 2.20 × 10−16 | *** |
Subjects | 3 | 26,287.24 | 3.91 | 2.20 × 10−16 | *** |
Residual | 9990 | 568,293.41 | 84.55 |
DF | Deviance | % Tot | p-Value | Significance | |
---|---|---|---|---|---|
Nnet | 1 | 173,188.83 | 25.56 | 2.2 × 10−16 | *** |
Naut | 1 | 10,785.58 | 1.59 | 2.2 × 10−16 | *** |
Aaut | 1 | 28,534.06 | 1.60 | 2.2 × 10−16 | *** |
∆H5 = H1 − H5 | 1 | 116,157.72 | 19.76 | 2.2 × 10−16 | *** |
Disciplines | 24 | 24,249.43 | 3.58 | 2.2 × 10−16 | *** |
Residual | 7123 | 324,755.00 | 47.92 |
DF | Deviance | % Tot | p-Value | Significance | |
---|---|---|---|---|---|
Nnet | 1 | 173,188.83 | 25.56 | 2.2 × 10−16 | *** |
Naut | 1 | 10,785.58 | 1.59 | 2.2 × 10−16 | *** |
Aaut | 1 | 28,534.06 | 1.60 | 2.2 × 10−16 | *** |
∆H5 = H1 − H5 | 1 | 116,157.72 | 19.76 | 2.2 × 10−16 | *** |
Subjects | 3 | 6713.68 | 0.99 | 2.2 × 10−16 | *** |
Residual | 7144 | 342,290.80 | 50.51 |
References
- Zagonari, F. Scientific Production and Productivity for Characterizing an Author’s Publication History: Simple and Nested Gini’s and Hirsch’s Indexes Combined. Publications 2019, 7, 32. [Google Scholar] [CrossRef]
- Abramo, G.; D’angelo, C.A.; Zhang, L. A comparison of two approaches for measuring interdisciplinary research output: The disciplinary diversity of authors vs. the disciplinary diversity of the reference list. J. Informetr. 2018, 12, 1182–1193. [Google Scholar] [CrossRef]
- Brito, A.C.M.; Silva, F.N.; Amancio, D.R. Analyzing the influence of prolific collaborations on authors’ productivity and visibility. Scientometrics 2023, 128, 2471–2487. [Google Scholar] [CrossRef]
- Ghani, R.; Qayyum, F.; Afzal, M.T.; Maurer, H. Comprehensive evaluation of h-index and its extensions in the domain of mathematics. Scientometrics 2019, 118, 809–822. [Google Scholar] [CrossRef]
- Fassin, Y. The HF-rating as a universal complement to the H-index. Scientometrics 2020, 125, 965–990. [Google Scholar] [CrossRef]
- Usman, M.; Mustafa, G.; Afzal, M.T. Ranking of author assessment parameters using Logistic Regression. Scientometrics 2021, 126, 335–353. [Google Scholar] [CrossRef]
- Mingers, J.; Meyer, M. Normalizing Google Scholar data for use in research evaluation. Scientometrics 2017, 112, 1111–1121. [Google Scholar] [CrossRef] [PubMed]
- Yuret, T. Author-weighted impact factor and reference return ratio: Can we attain more equality among fields? Scientometrics 2018, 116, 2097–2111. [Google Scholar] [CrossRef]
- Zagonari, F. Coping with the inequity and inefficiency of the H-index: A cross-disciplinary analytical model. Publ. Res. Q. 2019, 35, 285–300. [Google Scholar] [CrossRef]
- Fassin, Y. The ha-index: The average citation h-index. Quant. Sci. Stud. 2023, 4, 756–777. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Chalker, J.M.; Crabtree, S.A.; Eijkelkamp, B.A.; Long, J.A.; Smith, J.R.; Trinajstic, K.; Weisbecker, V. A fairer way to compare researchers at any career stage and in any discipline using open-access citation data. PLoS ONE 2021, 16, e0257141. [Google Scholar] [CrossRef] [PubMed]
- Halim, Z.; Khan, S. A data science-based framework to categorize academic journals. Scientometrics 2019, 119, 393–423. [Google Scholar] [CrossRef]
- Ibrahim, N.; Habacha Chaibi, A.; Ben Ahmed, M. New scientometric indicator for the qualitative evaluation of scientific production. New Libr. World 2015, 116, 661–676. [Google Scholar] [CrossRef]
- Brandão, L.C. A multi-criteria approach to the h-index. Eur. J. Oper. Res. 2019, 276, 357–363. [Google Scholar] [CrossRef]
- Bihari, A.; Tripathi, S.; Deepak, A. Iterative weighted EM and iterative weighted EM′-index for scientific assessment of scholars. Scientometrics 2021, 126, 5551–5568. [Google Scholar] [CrossRef]
- Kim, E.; Jeong, D.Y. Dominant Characteristics of Subject Categories in a Multiple-Category Hierarchical Scheme: A Case Study of Scopus. Publications 2023, 11, 51. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1998; Volume 326. [Google Scholar]
- Konar, T. Author-suggested. weighted citation index: A novel approach for determining the contribution of individual researchers. Publications 2021, 9, 30. [Google Scholar] [CrossRef]
- Põder, E. What Is Wrong with the Current Evaluative Bibliometrics? Front. Res. Metr. Anal. 2021, 6, 824518. [Google Scholar] [CrossRef] [PubMed]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman & Hall: London, UK, 1989. [Google Scholar]
- Alshdadi, A.A.; Usman, M.; Alassafi, M.O.; Afzal, M.T.; AlGhamdi, R. Formulation of rules for the scientific community using deep learning. Scientometrics 2023, 128, 1825–1852. [Google Scholar] [CrossRef]
- Andersen, J.P.; Nielsen, M.W. Google Scholar and Web of Science: Examining gender differences in citation coverage across five scientific disciplines. J. Informetr. 2018, 12, 950–959. [Google Scholar] [CrossRef]
- Wildgaard, L. A comparison of 17 author-level bibliometric indicators for researchers in Astronomy. Environmental Science, Philosophy and Public Health in Web of Science and Google Scholar. Scientometrics 2015, 104, 873–906. [Google Scholar] [CrossRef]
- Harzing, A.-W.; Alakangas, S.; Adams, D. hIa: An individual annual H-index to accommodate disciplinary and career length difference. Scientometrics 2014, 99, 811–821. [Google Scholar] [CrossRef]
- Loan, F.A.; Nasreen, N.; Bashir, B. Do authors play fair or manipulate Google Scholar H-index? Libr. High Tech 2022, 40, 676–684. [Google Scholar] [CrossRef]
- Tokmachev, A.M. Hidden scales in statistics of citation indicators. J. Informetr. 2023, 17, 101356. [Google Scholar] [CrossRef]
- De Stefano, D.; Zaccarin, S. Co-authorship networks and scientific performance: An empirical analysis using the generalized extreme value distribution. J. Appl. Stat. 2016, 43, 262–279. [Google Scholar] [CrossRef]
- Ryan, J.C. A validation of the individual annual h-index (hIa): Application of the hIa to a qualitatively and quantitatively different sample. Scientometrics 2016, 109, 577–590. [Google Scholar] [CrossRef]
- Moreira, J.A.G.; Zeng, X.H.T.; Nunes Amaral, L.A. The distribution of the asymptotic number of citations to sets of publications by a researcher or from an academic department are consistent with a discrete lognormal model. PLoS ONE 2015, 10, e0143108. [Google Scholar] [CrossRef] [PubMed]
- Kuppler, M. Predicting the future impact of Computer Science researchers: Is there a gender bias? Scientometrics 2022, 127, 6695–6732. [Google Scholar] [CrossRef]
- Jin, Y.; Yuan, S.; Shao, Z.; Hall, W.; Tang, J. Turing Award elites revisited: Patterns of productivity. collaboration, authorship and impact. Scientometrics 2021, 126, 2329–2348. [Google Scholar] [CrossRef]
- Koltun, V.; Hafner, D. The h-index is no longer an effective correlate of scientific reputation. PLoS ONE 2021, 16, e0253397. [Google Scholar] [CrossRef]
- Lykke, M.; Amstrup, L.; Hvidtfeldt, R.; Pedersen, D.B. Mapping research activities and societal impact by taxonomy of indicators: Uniformity and diversity across academic fields. J. Doc. 2023, 79, 1049–1070. [Google Scholar] [CrossRef]
- Todeschini, R.; Baccini, A. Handbook of Bibliometric Indicators: Quantitative Tools for Studying and Evaluating Research; Wiley-VCH: Weinheim, Germany, 2016. [Google Scholar]
- Ketzler, R.; Zimmermann, K.F. A citation-analysis of economic research institutes. Scientometrics 2013, 95, 1095–1112. [Google Scholar] [CrossRef] [PubMed]
Acronyms | Description |
---|---|
Ifa | Inefficiency a |
Ifb | Inefficiency b |
Iqa | Inequity a |
Iqb | Inequity b |
Variables | |
Npub | Number of publications |
Nart | Number of articles |
Ngro | Number of citations including co-author’s citations |
Nnet | Number of citations excluding co-author’s citations |
Naut | Mean number of co-authors |
H1 | H-index based on publications |
H2 | H-index based on articles |
H3 | H-index based on net citations per article |
H4 | Net per-capita H-index based on articles |
H5 | Net per-capita per-year H-index based on articles |
∆Hh = Hh − Hh+1 | H-index improvement, h = 1, 2, 3, 4, 5 |
Dj | Dummy variable for discipline j (j = 1,…, 27) (i.e., Dj takes value 1 for a discipline j and 0 for disciplines other than j) |
Sk | Dummy variable for subject k (k = 1, 2, 3, 4) (i.e., Sk takes value 1 for a subject k and 0 for subjects other than k) |
Aaut | Dummy variable for age (Aaut = 1 if author’s first publication is after 2009, otherwise Aaut = 0) |
Npub | Nart | Naut | Ngro | Nnet | |
---|---|---|---|---|---|
Health | 5.112 (14.302) | 5.057 (14.032) | 12.875 (74.372) | 8.091 (24.841) | 7.966 (24.302) |
1 [1–444] | 1 [1–435] | 6.400 [1–2060] | 2.333 [0–988] | 2.333 [0–965] | |
Life | 5.203 (11.979) | 5.171 (11.901) | 7.904 (15.337) | 9.480 (21.171) | 9.289 (20.764) |
2 [1–206] | 2 [1–206] | 6 [1–461] | 3 [0–358] | 3 [0–358] | |
Physical | 5.709 (17.865) | 5.687 (17.835) | 15.874 (135.262) | 5.646 (13.910) | 5.510 (13.720) |
2 [1–468] | 2 [1–468] | 4.500 [1–2837.009] | 1.667 [0–256] | 1.600 [0–256] | |
Social | 2.909 (4.246) | 2.906 (4.237) | 3.061 (9.622) | 4.775 (14.610) | 4.737 (14.590) |
1 [1–39] | 1 [1–39] | 2 [1–228] | 1 [0–212] | 1 [0–212] |
H1 | H2 | H3 | H4 | H5 | |
---|---|---|---|---|---|
Health | 1.916 (3.151) | 1.916 (3.151) | 1.889 (3.033) | 0.329 (0.559) | 0.173 (0.249) |
1 [0–43] | 1 [0–43] | 1 [0–39] | 0.167 [0–8.367] | 0.111 [0–4.111] | |
Life | 2.188 (3.525) | 2.188 (3.525) | 2.147 (3.300) | 0.423 (0.681) | 0.216 (0.291) |
1 [0–72] | 1 [0–72] | 1 [0–60] | 0.200 [0–6.479] | 0.143 [0–3.167] | |
Physical | 1.774 (2.913) | 1.774 (2.913) | 1.728 (2.747) | 0.430 (0.705) | 0.220 (0.320) |
1 [0–42] | 1 [0–42] | 1 [0–37] | 0.225 [0–12.417] | 0.125 [0–5.333] | |
Social | 1.209 (1.606) | 1.209 (1.606) | 1.198 (1.576) | 0.601 (0.839) | 0.313 (0.419) |
1 [0–12] | 1 [0–12] | 1 [0–12] | 0.333 [0–6] | 0.167 [0–2.667] |
DF | Sum Squares | % Tot | Mean Squares | F Value | p-Value | Significance | |
---|---|---|---|---|---|---|---|
∆H1 = H1 − H2 | |||||||
Disciplines | 24 | 4.67 | 0.47 | 0.194473 | 1.9541 | 0.003504 | ** |
Residuals | 9972 | 992.43 | 99.53 | 0.099521 |
DF | Sum Squares | % Tot | Mean Squares | F Value | p-Value | Significance | |
---|---|---|---|---|---|---|---|
∆H1 = H1 − H2 | |||||||
Subjects | 3 | 2.86 | 0.29 | 0.95231 | 9.5716 | 2.621 × 10−06 | *** |
Residuals | 9993 | 994.24 | 99.71 | 0.09949 |
Nobs | Npub | Nart | ∆ | % | |
---|---|---|---|---|---|
Health | 3698 | 18,904 | 18,702 | 202 | 1.07 |
Life | 1834 | 9543 | 9483 | 60 | 0.63 |
Physical | 3733 | 21,311 | 21,230 | 81 | 0.38 |
Social | 733 | 2132 | 2130 | 2 | 0.09 |
DF | Sum Squares | % Tot | Mean Squares | F Value | p-Value | Significance | |
---|---|---|---|---|---|---|---|
∆H2 = H2 − H3 | 1 | 3140.6 | 26.79 | 3140.63 | 3663.7511 | <2 × 10−16 | *** |
Disciplines | 24 | 34.0 | 0.29 | 1.42 | 1.6547 | 0.02316 | * |
Residuals | 9971 | 8547.3 | 72.92 | 0.86 |
DF | Sum Squares | % Tot | Mean Squares | F Value | p-Value | Significance | |
---|---|---|---|---|---|---|---|
∆H2 = H2 − H3 | 1 | 3140.6 | 26.79 | 3140.63 | 3659.968 | <2 × 10−16 | *** |
Subjects | 3 | 7.2 | 0.06 | 2.40 | 2.792 | 0.0389 | * |
Residuals | 9992 | 8574.2 | 73.15 | 0.86 |
Estimate | Std. Error | t Value | p-Value | Significance | |
---|---|---|---|---|---|
∆H2 = H2 − H3 | 2.00998 | 0.03325 | 60.442 | <2 × 10−16 | *** |
Health | 0.07116 | 0.01526 | 4.663 | 3.16 × 10−06 | *** |
Life | 0.10768 | 0.02167 | 4.968 | 6.88 × 10−07 | *** |
Physical | 0.04189 | 0.01524 | 2.748 | 0.006 | ** |
Social | 0.01604 | 0.03422 | 0.469 | 0.639 |
DF | Sum Squares | % Tot | Mean Squares | F Value | p-Value | Significance | |
---|---|---|---|---|---|---|---|
Naut | 1 | 25,395 | 0.66 | 25,395 | 70.0203 | <2.2 × 10−16 | *** |
∆H3 = H3 − H4 | 1 | 168,777 | 4.38 | 168,777 | 465.3608 | <2.2 × 10−16 | *** |
Disciplines | 24 | 46,907 | 1.22 | 1954 | 5.3889 | 2.728 × 10−16 | *** |
Residuals | 9970 | 3,615,927 | 93.75 | 363 |
DF | Sum Squares | % Tot | Mean Squares | F Value | p-Value | Significance | |
---|---|---|---|---|---|---|---|
Naut | 1 | 25,395 | 0.66 | 25,395 | 69.551 | <2.2 × 10−16 | *** |
∆H3 = H3 − H4 | 1 | 168,777 | 4.38 | 168,777 | 462.241 | <2.2 × 10−16 | *** |
Subjects | 3 | 14,837 | 0.38 | 4946 | 13.545 | 8.129 × 10−09 | *** |
Residuals | 9991 | 3,647,997 | 94.58 | 365 |
Estimate | Std. Error | t Value | p-Value | Significance | |
---|---|---|---|---|---|
Naut | 0.009705 | 0.002054 | 4.725 | 2.33 × 10−06 | *** |
∆H3 = H3 − H4 | 1.680821 | 0.080859 | 20.787 | <2 × 10−16 | *** |
Health | 5.220720 | 0.337960 | 15.448 | <2 × 10−16 | *** |
Life | 6.315327 | 0.466899 | 13.526 | <2 × 10−16 | *** |
Physical | 3.174912 | 0.329690 | 9.630 | <2 × 10−16 | *** |
Social | 3.703891 | 0.707383 | 5.236 | 1.67 × 10−07 | *** |
Health | Life | Physical | Social | |
---|---|---|---|---|
Health | - | 0.0450 | 4.1 × 10−06 | 0.0508 |
Life | 1.0946 | - | 9.3 × 10−09 | 0.0019 |
Physical | −2.0458 | −3.1404 | - | 0.4944 |
Social | −1.5168 | −2.6114 | −0.529 | - |
DF | Sum Squares | % Tot | Mean Squares | F Value | p-Value | Significance | |
---|---|---|---|---|---|---|---|
Naut | 1 | 25,395 | 0.66 | 25,395 | 70.9415 | <2.2 × 10−16 | *** |
Aaut | 1 | 172,892 | 4.48 | 172,892 | 482.9768 | <2.2 × 10−16 | *** |
∆H4 = H4 − H5 | 1 | 17,869 | 0.46 | 17,869 | 49.9175 | 1.711 × 10−12 | *** |
Disciplines | 24 | 72,237 | 1.87 | 3010 | 8.4082 | <2.2 × 10−16 | *** |
Residuals | 9969 | 3,568,613 | 92.52 | 358 |
DF | Sum Squares | % Tot | Mean Squares | F Value | p-Value | Significance | |
---|---|---|---|---|---|---|---|
Naut | 1 | 25,395 | 0.66 | 25,395 | 70.158 | <2.2 × 10−16 | *** |
Aaut | 1 | 172,892 | 4.48 | 172,892 | 477.644 | <2.2 × 10−16 | *** |
∆H4 = H4 − H5 | 1 | 17,869 | 0.46 | 17,869 | 49.366 | 2.262 × 10−12 | *** |
Subjects | 3 | 24,794 | 0.64 | 8265 | 22.833 | 1.002 × 10−14 | *** |
Residuals | 9990 | 3,616,056 | 93.75 | 362 |
Estimate | Std. Error | t Value | p-Value | Significance | |
---|---|---|---|---|---|
Naut | 0.017634 | 0.002015 | 8.752 | <2 × 10−16 | *** |
Aaut | −8.844221 | 0.408641 | −21.643 | <2 × 10−16 | *** |
∆H4 = H4 − H5 | −0.458533 | 0.498655 | −0.920 | 0.358 | |
Health | 12.266976 | 0.398495 | 30.783 | <2 × 10−16 | *** |
Life | 13.541654 | 0.512477 | 26.424 | <2 × 10−16 | *** |
Physical | 9.790119 | 0.409115 | 23.930 | <2 × 10−16 | *** |
Social | 9.049664 | 0.757110 | 11.953 | <2 × 10−16 | *** |
Health | Life | Physical | Social | |
---|---|---|---|---|
Health | - | 0.0191 | 2.2 × 10−08 | 3.1 × 10−05 |
Life | 1.2747 | - | 5.1 × 10−12 | 6.9 × 10−08 |
Physical | −2.4769 | −3.7515 | - | 0.336 |
Social | −3.2173 | −4.4920 | −0.7405 | - |
DF | Sum Squares | % Tot | Mean Squares | F Value | p-Value | Significance | |
---|---|---|---|---|---|---|---|
Nnet | 1 | 3,790,911 | 99.72 | 3,790,911 | 3.1661 × 10+06 | <2.2 × 10−16 | *** |
Naut | 1 | 302 | 0.01 | 302 | 2.5244 × 10+02 | <2.2 × 10−16 | *** |
Aaut | 1 | 19 | 0.00 | 19 | 1.5815 × 10+01 | 7.053 × 10−05 | *** |
∆H5 = H1 − H5 | 1 | 1562 | 0.04 | 1562 | 1.3042 × 10+03 | <2.2 × 10−16 | *** |
Disciplines | 24 | 71 | 0.00 | 3 | 2.4638 × 10+00 | 8.895 × 10−05 | *** |
Residuals | 7123 | 8529 | 0.22 | 1 |
DF | Sum Squares | % Tot | Mean Squares | F Value | p-Value | Significance | |
---|---|---|---|---|---|---|---|
Nnet | 1 | 3,790,911 | 99.72 | 3,790,911 | 3.1542 × 10+06 | <2.2 × 10−16 | *** |
Naut | 1 | 302 | 0.01 | 302 | 2.5149 × 10+02 | <2.2 × 10−16 | *** |
Aaut | 1 | 19 | 0.00 | 19 | 1.5756 × 10+01 | 7.277 × 10−05 | *** |
∆H5 = H1 − H5 | 1 | 1562 | 0.04 | 1562 | 1.2993 × 10+03 | <2.2 × 10−16 | *** |
Subjects | 3 | 14 | 0.00 | 5 | 3.7473 × 10+00 | 0.01053 | * |
Residuals | 7144 | 8586 | 0.23 | 1 |
Estimate | Std. Error | t Value | p-Value | Significance | |
---|---|---|---|---|---|
Nnet | 1.0153304 | 0.0005870 | 1729.830 | <2 × 10−16 | *** |
Naut | 0.0011305 | 0.0001229 | 9.200 | <2 × 10−16 | *** |
Aaut | 0.1808438 | 0.0282857 | 6.393 | 1.72 × 10−10 | *** |
∆H5 = H1 − H5 | 0.1589654 | 0.0044038 | 36.097 | <2 × 10−16 | *** |
Health | −0.4654963 | 0.0282006 | −16.507 | <2 × 10−16 | *** |
Life | −0.4164853 | 0.0346145 | −12.032 | <2 × 10−16 | *** |
Physical | −0.3747120 | 0.0275985 | −13.577 | <2 × 10−16 | *** |
Social | −0.3403357 | 0.0523529 | −6.501 | 8.53 × 10−11 | *** |
H5 ≥ 1 | H5 ≥ 1.5 | H5 ≥ 2 | H5 ≥ 2.5 | H5 ≥ 3 | |
---|---|---|---|---|---|
Health | 0.01012250 | 0.00105278 | 0.00009720 | 0.00000083 | 0.00000006 |
Life | 0.01899160 | 0.00260541 | 0.00031683 | 0.00003588 | 0.00000038 |
Physical | 0.04220660 | 0.00922697 | 0.00182136 | 0.00033814 | 0.00006023 |
Social | 0.14236600 | 0.04902840 | 0.01510380 | 0.00434077 | 0.00118783 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagonari, F.; Foschi, P. Coping with the Inequity and Inefficiency of the H-Index: A Cross-Disciplinary Empirical Analysis. Publications 2024, 12, 12. https://doi.org/10.3390/publications12020012
Zagonari F, Foschi P. Coping with the Inequity and Inefficiency of the H-Index: A Cross-Disciplinary Empirical Analysis. Publications. 2024; 12(2):12. https://doi.org/10.3390/publications12020012
Chicago/Turabian StyleZagonari, Fabio, and Paolo Foschi. 2024. "Coping with the Inequity and Inefficiency of the H-Index: A Cross-Disciplinary Empirical Analysis" Publications 12, no. 2: 12. https://doi.org/10.3390/publications12020012
APA StyleZagonari, F., & Foschi, P. (2024). Coping with the Inequity and Inefficiency of the H-Index: A Cross-Disciplinary Empirical Analysis. Publications, 12(2), 12. https://doi.org/10.3390/publications12020012