Potential Advantages of Peroxoborates and Their Ester Adducts Over Hydrogen Peroxide as Therapeutic Agents in Oral Healthcare Products: Chemical/Biochemical Reactivity Considerations In Vitro, Ex Vivo And In Vivo
Abstract
:1. Introduction
- To review the applications of peroxoborate species as therapeutic agents for the treatment of oral health conditions such as periodontitis and halitosis, and as tooth-whitening agents;
- To evaluate their clinical successes and possible undesirable side-effects when employed for these purposes, with special reference to their potential modes of action;
- To assess the chemical heterogeneity of peroxoborate species in aqueous solution media and in oral healthcare and tooth-whitening formulations;
- To critically explore and review their chemical reactivities, and the biomolecular mechanisms associated with their favourable clinical effects, when employed as oral healthcare products;
- To compare and contrast their stabilities, chemical reactivities, and positive oral health and tooth-bleaching effects to those obtained with the application of hydrogen peroxide (H2O2)-alone products;
- Overall: To provide dental clinicians, oral healthcare specialists and scientists with valuable molecular information regarding the clinical and tooth-whitening applications and actions of peroxoborate-containing products as alternatives to well-known and frequently employed H2O2 formulations.
- The favourable clinical and tooth-whitening actions of peroxoborates are equivalent to those of equimolar concentrations/doses of H2O2, and the application-dependent mechanisms of action involved for both agents are identical.
2. Molecular Heterogeneity of Peroxoborates in Aqueous Solution: Potential Differential Reactivities with Oral Environment Biomolecules
3. Peroxoborate Photochemistry
4. Potential Mechanisms of the Oxidation of Biomolecular Substrates by Peroxoborates: Considerations of Active Species Involved
5. Differential Reactivities of Peroxoborate Species and H2O2 with Biomolecular Substrates
5.1. Reactions with Thiols and Thioethers
5.2. Reactions with Amine Functions and Biogenic Amines
5.3. Alcohols and Phenols
5.3.1. Oxidation Reactions
5.3.2. Boric Acid/Borate and Peroxoboric Acid/Peroxoborate Esters and Complexes
5.4. Unsaturated Compounds, Including Unsaturated Fatty Acids
5.5. 5-Oxo-Carboxylic Acids
5.6. Interaction of a Peroxoborate-Containing Oral Health Product with Intact Human Saliva in Vitro: Evidence for its Mechanisms of Action?
6. Physicochemical Considerations for the Involvement of Peroxoborate Species in Fenton and Pseudo-Fenton Reactions: Comparisons with H2O2 as a Reactant
6.1. Maintenance of Iron(II)/Iron(III) ion Solubility in Aqueous Solution by Borate and Peroxoborate Species via Complexation Reactions
6.2. Accessibility of Peroxoborate-OOH Function(s) to ‘Catalytic’ Transition Metal Ions? Relevance to ●OH Radical Generation
6.3. Potential Complexation of ‘Catalytic’ Transition Metal Ions at Peroxoborate Ester Sites Remote from its Active -OOH Function
6.4. Considerations of the Potential Rates of Pseudo-Fenton Reactions of Fe(II) Ions with Peroxoborate Species and Their Ester Adducts
6.5. Availability of Hydroxyl Radical (●OH) Scavenging (Antioxidant) Functions in the Glycerol or Cellulosic Moieties of Peroxoborate-Ester Adducts
6.6. Potential Influences of the Electronic Charge and Medium Viscosity of Peroxoborate/Peroxoborate-Ester Derivatives, and Salivary Ionic Strength, on Their Biochemical Reactivities
7. Peroxoborate Species as Alternative Tooth-Whitening Agents to H2O2
7.1. H2O2 and Carbamide Peroxide (CP) as Agents for the Removal of Unaesthetic Tooth Stains
7.2. Dependence of the Bleaching Actions of Peroxides on pH
7.3. Consideration of Potential Mechanisms Available for Peroxide-Mediated Tooth-Whitening Processes
7.4. Health and Safety Considerations for H2O2 and CP Tooth-Whitening Formulations: Potential Adverse Health Effects
7.5. Tooth-Whitening Activities of Peroxoborate Species and Their Polyol Esters
8. Mutagenic and Genotoxic Potential of Peroxoborate when Employed at High Concentrations for Tooth-Whitening Purposes?
9. Ability of a Peroxoborate Oral Healthcare Product to Attenuate Oral Cavity Volatile Sulfur Compound Levels In Vivo and hence Combat Oral Malodor
10. Specificity of the Inhibition of Proteinase Enzymes by Peroxoborates
11. Consideration of the Roles of H2O2 and Peroxoborate Species in Triggering or Perturbing Inflammatory Mediators and Vitamins in Periodontal Diseases
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Research Ethics Statement
References
- McKillop, A.; Sanderson, W.R. Sodium perborate and sodium percarbonate: Cheap, safe and versatile oxidizing agents for organic synthesis. Tetrahedron 1995, 51, 6145–6166. [Google Scholar] [CrossRef]
- Hannson, A. On the crystal structure of hydrated sodium peroxoborate. Acta Chem. Scand. 1961, 15, 934–935. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety. Opinion on Sodium Perborate and Perboric Acid; European Commission: Brussels, Belgium, 2010; SCCS/1345/10. [Google Scholar]
- Dona, B.L.; Grundemann, L.J.; Steinfort, J.; Timmerman, M.F.; van der Weijden, G.A. The inhibitory effect of combining chlorhexidine and hydrogen peroxide on 3-day plaque accumulation. J. Clin. Periodontol. 1998, 25, 879–883. [Google Scholar] [CrossRef]
- Grundemann, L.J.; Timmerman, M.F.; Ijzerman, Y.; van der Weijden, G.A. Stain, plaque and gingivitis reduction by combining chlorhexidine and peroxyborate. J. Clin. Periodontol. 2000, 27, 9–15. [Google Scholar] [CrossRef] [PubMed]
- van Maanen-Schakel, N.W.; Slot, D.E.; Bakker, E.W.; van der Weijden, G.A. The effect of an oxygenating agent on chlorhexidine-induced extrinsic tooth staining: A systematic review. Int. J. Dent. Hyg. 2012, 10, 198–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feiz, A.; Barekatain, B.; Khalesi, S.; Khalighinejad, N.; Badrian, H.; Swift, E.J. Effect of several bleaching agents on teeth stained with a resin-based sealer. Int. Endod. J. 2014, 47, 3–9. [Google Scholar] [CrossRef]
- Lynch, E.; Sheerin, A.; Silwood, C.J.; Grootveld, M. Multicomponent evaluations of the oxidising actions and status of a peroxoborate-containing tooth-whitening system in whole human saliva using high resolution proton NMR spectroscopy. J. Inorg. Biochem. 1999, 73, 65–84. [Google Scholar] [CrossRef]
- Ntrouka, V.; Hoogenkamp, M.; Zaura, E.; van der Weijden, F. The effect of chemotherapeutic agents on titanium-adherent biofilms. Clin. Oral Implant. Res. 2011, 22, 1227–1234. [Google Scholar] [CrossRef]
- Mostajo, M.F.Y.; van der Reijden, W.A.; Buijs, M.J.; Beertsen, W.; Van der Weijden, F.; Crielaard, W.; Zaura, E. Effect of an oxygenating agent on oral bacteria in vitro and on dental plaque composition in healthy young adults. Front. Cell. Infect. Microbiol. 2014, 4, 95. [Google Scholar] [CrossRef]
- Oral Health Topics: Mouthwash (Mouthrinse). Available online: www.ada.org/en/member-center/oral-health-topics/mouthrinse (accessed on 29 August 2019).
- Marshall, M.V.; Cancro, L.P.; Fischman, S.L. Hydrogen peroxide: A review of its use in dentistry. J. Periodont. 1995, 66, 786–796. Available online: https://aap.onlinelibrary.wiley.com/doi/10.1902/jop.1995.66.9.786 (accessed on 10 March 2020). [CrossRef]
- Pizer, R.; Tihal, C. Peroxoborates. Interaction of boric acid and hydrogen peroxide in aqueous solution. Inorg. Chem. 1987, 26, 363–369. [Google Scholar] [CrossRef]
- Carrondo, M.A.; Skapski, A.C. Refinement of the X-ray crystal structure of the industrial bleaching agent disodium tetrahydroxo-di-μ-peroxo-diborate hexahydrate, Na2[B2(O2)2(OH)4]·6H2O. Acta Cryst. B 1978, 34, 3551–3554. [Google Scholar] [CrossRef]
- Flanagan, J.; Griffith, W.P.; Powell, R.D.; West, A.P. Vibrational spectra of alkali metal peroxoborate. Spectrochim. Acta A 1989, 45, 951–955. [Google Scholar] [CrossRef]
- Flanagan, J.; Griffith, W.P.; Powell, R.D.; West, A.P. Nature of peroxoborate species in aqueous solution by a study of boron-11 nuclear magnetic resonance and Raman spectroscopy. J. Chem. Soc. Dalton Trans. 1989, 9, 1651–1655. [Google Scholar] [CrossRef]
- Dehmlow, E.V.; Vehre, B. Extraction of perborate by phase transfer catalysis (applications of phase transfer catalysis, part XLIII). New J. Chem. 1989, 13, 117–119. [Google Scholar]
- Thompson, K.M.; Griffith, W.P.; Spiro, M.J.; Thompson, K.M.; Griffith, W.P.; Spiro, M. Mechanism of bleaching by peroxides. Part 2—Kinetics of bleaching of alizarin and crocetin by hidrogen peroxide at high pH. Chem. Soc. Faraday Trans. 1993, 89, 4035–4043. [Google Scholar] [CrossRef]
- Burgess, J.; Hubbard, C.D. Chapter Six–Catalysis or Convenience? Perborate in Context. In Advances in Inorganic Chemistry; van Eldik, R., Hubbard, C.D., Eds.; Academic Press: London, UK, 2013; Volume 65, pp. 217–310. ISSN 0898-8838. ISBN 9780124045828. [Google Scholar]
- Unis, M.M.A. Peroxide Reactions of Environmental Relevance in Aqueous Solution. Ph.D. Thesis, University of Northumbria, Newcastle, UK, 2010. [Google Scholar]
- Rey, S.; Davies, D.M. Photochemistry of peroxoborates: Borate inhibition of the photodecomposition of hydrogen peroxide. Chem. A Eur. J. 2006, 12, 9284–9288. [Google Scholar] [CrossRef]
- Gurgan, S.; Cakir, F.Y.; Yazici, E. Different light-activated in-office bleaching systems: A clinical evaluation. Lasers Med. Sci. 2010, 25, 817–822. [Google Scholar] [CrossRef]
- Gómez, M.V.; Caballero, R.; Vázquez, E.; Moreno, A.; de la Hoz, A.; Díaz-Ortiz, A. Green and chemoselective oxidation of sulfides with sodium perborate and sodium percarbonate: Nucleophilic and electrophilic character of the oxidation system. Green Chem. 2007, 9, 331. [Google Scholar] [CrossRef]
- Silwood, C.J.L.; Lynch, E.; Seddon, S.; Sheerin, A.; Claxson, A.W.D.; Grootveld, M.C. H NMR analysis of microbial-derived organic acids in primary root carious lesions and saliva. Nmr Biomed. 1999, 12, 345–356. [Google Scholar] [CrossRef]
- Dahle, J.E.; Pallesen, U. Tooth bleaching–A critical review of the biological aspects. Crit. Rev. Oral Biol. Med. 2003, 14, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Albers, H.F. (Ed.) Lightening Natural Teeth; ADEPT Report: Kent, UK, 1991; Volume 2, pp. 1–24. [Google Scholar]
- Lynch, E.; Sheerin, A.; Atherton, M.; Hawkes, J.; Haycock, P.; Grootveld, M.C. Molecular mechanisms associated with the bleaching actions of commercially-available whitening oral health care products. J. Ir. Dent. Assoc. 1996, 41, 94–102. [Google Scholar]
- Chan, W.; Lynch, E.; Grootveld, M. Tooth-whitening activity of a novel home-bleaching system utilising thermal diffusion: A multifactorial simultaneous evaluation of efficacies at cervical, body and incisal tooth sites. Br. Dent. J. 2012, 212, E8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durrant, M.C.; Davies, D.M.; Deary, M.E. Dioxaborirane: A highly reactive peroxide that is the likely intermediate in borate catalysed electrophilic reactions of hydrogen peroxide in alkaline aqueous solution. Org. Biomol. Chem. 2011, 9, 7249–7254. [Google Scholar] [CrossRef]
- Davies, D.M.; Deary, M.E.; Quill, K.; Smith, R.A. Borate-catalyzed reactions of hydrogen peroxide: Kinetics and mechanism of the oxidation of organic sulfides by peroxoborates. Chem. Eur. J. 2005, 11, 3552–3558. [Google Scholar] [CrossRef]
- Deary, M.E.; Durrant, M.C.; Davies, D.M. A kinetic and theoretical study of the borate catalysed reactions of hydrogen peroxide: The role of dioxaborirane as the catalytic intermediate for a wide range of substrates. Org. Biomol. Chem. 2013, 11, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Karunakaran, C.; Manimekalai, P. Kinetics and mechanism of perborate oxidation of organic sulphides. Tetrahedron 1991, 47, 8733–8738. [Google Scholar] [CrossRef]
- Rajanna, K.C.; Narsi Reddy, K.; Umesh Kumar, U.; Sai Prakash, P.K. A kinetic study of electron transfer from L-Ascorbic acid to sodium perborate and potassium peroxy disulphate in aqueous acid and micellar media. Int. J. Chem. Kinet. 1996, 28, 153–164. [Google Scholar] [CrossRef]
- Karunakaran, C.; Ganapathy, K.; Ramasamy, P. Kinetics of perborate oxidation of quinol. React. Kinet. Catal. Lett. 1989, 40, 369–374. [Google Scholar] [CrossRef]
- McKillop, A.; Tarbin, J.A. Functional group oxidation using sodium perborate 1. Tetrahedron 1987, 43, 1753–1758. [Google Scholar] [CrossRef]
- McKillop, A.; Tarbin, J.A. Sodium perborate–A cheap and effective reagent for the oxidation of anilines and sulphides. Tetrahedron Lett. 1983, 24, 1505–1508. [Google Scholar] [CrossRef]
- Aggarwal, V.K.; Davies, I.W.; Franklin, R.; Maddock, J.; Mahon, M.F.; Molloy, K.C. Studies on the oxidation of 1,3-dithiane and 5,5-disubstituted analogues including X-ray crystal structure, equilibration studies and pKa measurements on selected oxides. J. Chem. Soc. Perkin Trans. 1 1994, 2363–2368. [Google Scholar] [CrossRef]
- Chang, H.; Blackburn, J.; Grootveld, M. Chemometric analysis of the consumption of oral rinse chlorite (ClO2−) by human salivary biomolecules. Clin. Oral Investig. 2013, 17, 2065–2078. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Abotaleb, B.; Yang, L.; Lu, Y.; Guo, J.; He, X. Halitosis: Its intraoral factors and mechanism relating to formation. Dent. Health Curr. Res. 2016, 2, 2. [Google Scholar] [CrossRef]
- Chauvin, J.-P.R.; Pratt, D.A. On the reactions of thiols, sulfenic acids, and sulfinic acids with hydrogen peroxide. Angew. Chem. Int. Ed. 2017, 56, 6255–6259. [Google Scholar] [CrossRef]
- Adam, W.; Haas, W.; Sieker, G. Thianthrene 5-oxide as mechanistic probe in oxygen-transfer reactions: The case of carbonyl oxides vs. dioxiranes. J. Am. Chem. Soc. 1984, 106, 5020–5022. [Google Scholar] [CrossRef]
- Zajac, W.W.; Darcy, M.G.; Subong, A.P.; Buzby, J.H. Oxidation of primary aliphatic amines with sodium perborate. Tetrahedron Lett. 1989, 30, 6495–6496. [Google Scholar] [CrossRef]
- Silwood, C.J.L.; Lynch, E.; Claxson, A.W.D.; Grootveld, M.C. 1H and 13C NMR spectroscopic analysis of human saliva. J. Dent. Res. 2002, 81, 422–427. [Google Scholar] [CrossRef]
- Ottolina, G.; Carrea, G. Ab initio study of oxygen atom transfer from hydrogen peroxide to trimethylamine. Chem. Commun. (Camb.) 2001, 18, 1748–1749. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.C. An efficient oxidation of alcohols by aqueous H2O2 with 1,3-dibromo-5,5-dimethylhydantoin. Lett. Org. Chem. 2018, 15, 895–898. [Google Scholar] [CrossRef]
- van Duin, M.; Peters, J.A.; Kieboom, A.P.G.; van Bekkum, H. Studies on borate esters 1: The pH dependence of the stability of esters of boric acid and borate in aqueous medium as studied by 11B NMR. Tetrahedron 1984, 40, 2901–2911. [Google Scholar] [CrossRef]
- Silwood, C.J.L.; Grootveld, M.; Lynch, E. Multicomponent 11B NMR analysis of novel peroxoborate-containing tooth-whitening formulations. J. Dent. Res. 2006, 85, 949. [Google Scholar]
- Henderson, W.; How, M.; Kennedy, G.; Mooney, E. The interconversion of aqueous boron species and the interaction of borate with diols: A 11B n.m.r. study. Carbohydr. Res. 1973, 28, 1–12. [Google Scholar] [CrossRef]
- van Duin, M.; Peters, J.A.; Kieboom, A.P.G.; van Bekkum, H. Studies on borate esters IV. Structural analysis of borate esters of polyhydroxycarboxylates in water using13C and1H NMR spectroscopys. Recl. Trav. Chim. Pays-Bas 1985, 105, 488–493. [Google Scholar] [CrossRef]
- Dawber, J.G.; Green, S.I.E.; John, C.; Dawber, J.C.; Gabrail, S. A polarimetric and 11B and 13C nuclear magnetic resonance study of the reaction of the tetrahydroxyborate ion with polyols and carbohydrates. J. Chem. Soc. Faraday Trans. 1 1988, 84, 41–56. [Google Scholar] [CrossRef]
- Banerjee, A.; Hazra, B.; Bhattacharya, A.; Banerjee, S.; Banerje¢, G.C.; Sengupta, S. Novel applications of sodium perborate to the oxidation of aromatic aldehydes, α-hydroxycarboxylic acids, 1,2-diketones, α-hydroxyketones, 1,2-diols and some unsaturated compounds. Synthesis 1989, 10, 765–766. [Google Scholar] [CrossRef]
- Takashi, A.; Cork, D.G.; Takahide, K. Sodium percarbonate (SPC) as a hydrogen peroxide source for organic synthesis. Chem. Lett. 1986, 15, 665–666. [Google Scholar]
- Reed, K.L.; Gupton, J.T.; Solarz, T.L. The oxidation of α-β-unsaturated ketones in aqueous sodium perborate. Synth. Commun. 1989, 19, 3579–3587. [Google Scholar] [CrossRef]
- Rashid, A.; Read, G.J. Quinone epoxides. Part II. Synthesis of (-+)-terreic acid and some related epoxides. Chem. Soc. C 1967, 1323–1325. [Google Scholar] [CrossRef]
- Ichihara, A.; Oda, K.; Sakamura, S. Synthesis of dl-phyllostine and dl-epoxydon (phyllosinol). Agr. Biol. Chem. 1974, 38, 163–169. [Google Scholar] [CrossRef]
- Gupton, J.T.; Duranceau, S.J.; Miller, J.F.; Kosiba, M.L. The reaction of α-methylstyrene analogs and related compounds with sodium perborate in acid. Synth. Commun. 1988, 18, 937–947. [Google Scholar] [CrossRef]
- Devi, S.S.; Muthukumaran, B.; Krishnamoorthy, P. Perborate Oxidation of Substituted 5-Oxoacids in Aqueous Acetic Acid Medium: A Kinetic and Mechanistic Study. ISRN Phys. Chem. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Borkowski, M.; Richmann, M.; Reed, D.T.; Xiong, Y. Complexation of Nd(III) with tetraborate ion and its effect on actinide(III) solubility in WIPP brine. Radiochim. Acta 2010, 98, 577–582. [Google Scholar] [CrossRef]
- Zhang, Y.; Klamerth, N.; Chelme-Ayala, P.; Gamal El-Din, M. Comparison of classical Fenton, nitrilotriacetic acid (NTA)-Fenton, UV-Fenton, UV photolysis of Fe-NTA, UV-NTA-Fenton, and UV-H2O2 for the degradation of cyclohexanoic acid. Chemosphere. 2017, 175, 178–185. [Google Scholar] [CrossRef]
- Su, C.; Puls, R.W. Arsenate and arsenite removal by zerovalent iron: Effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride. Env. Sci. Technol. 2001, 35, 4562–4568. [Google Scholar] [CrossRef]
- Elrod, J.A.; Kester, D.R. Stability constants of iron(III) borate complexes. J. Solut. Chem. 1980, 9, 885–894. [Google Scholar] [CrossRef]
- Available online: www.ardoz.com/wp-content/uploads/2019/01/Ardox-X-technology-information.pdf (accessed on 12 May 2020).
- Grootveld, M.; Bell, J.K.; Halliwell, B.; Aruoma, O.I.; Bomford, A.; Sadler, P.J. Non-transferrin-bound iron in plasma from patients with idiopathic haemochromatosis. Characterisation by high performance liquid chromatography and nuclear magnetic resonance. J. Biol. Chem. 1989, 246, 4417–4422. [Google Scholar]
- Parkes, H.G.; Allen, R.E.; Furst, A.; Blake, D.R.; Grootveld, M. Speciation of non-transferrin-bound iron in synovial fluid from patients with rheumatoid arthritis by proton nuclear magnetic resonance spectroscopy. J. Pharm. Biomed. Anal. 1991, 9, 29–32. [Google Scholar] [CrossRef]
- Schultz, C.P.; Ahmed, M.K.; Dawes, C.; Mantsch, H.H. Thiocyanate levels in human saliva: Quantitation by Fourier transform infrared spectroscopy. Anal. Biochem. 1996, 240, 7–12. [Google Scholar] [CrossRef]
- Miller, C.J.; Rose, A.L.; Waite, T.D. Importance of iron complexation for Fenton-mediated hydroxyl radical production at circumneutral pH. Front. Mar. Sci. 2016, 3, 134. Available online: https://www.frontiersin.org/article/10.3389/fmars.2016.00134 (accessed on 12 June 2020). [CrossRef]
- Spiro, T.G.; Pape, L.; Saltman, P. Hydrolytic polymerization of ferric citrate. I. Chemistry Polymer. J. Am. Chem. Soc. 1967, 89, 5555–5559. [Google Scholar] [CrossRef]
- Barbusinski, K. Fenton reaction—Controversy concerning the chemistry. Ecol. Chem. Engin. S 2009, 16, 347–358. [Google Scholar]
- Rush, J.D.; Maskos, Z.; Koppenol, W.H. Reactions of iron(II) nucleotide complexes with hydrogen peroxide. FEBS Lett. 1990, 261, 121–123. [Google Scholar] [CrossRef] [Green Version]
- Aruoma, O.I.; Chaudhary, S.S.; Grootveld, M.; Halliwell, B. The binding of iron(II) ions to the pentose sugar 2-deoxyribose. J. Inorg. Biochem. 1989, 35, 149–155. [Google Scholar] [CrossRef]
- Lohmann, W.; Fowler, C.F.; Moss, A.J.; Perkins, W.H. Complex formation between glycerol and metal ions as studied by means of ESR, NMR, and optical absorption spectroacopy. Experientia 1965, 21, 31–32. [Google Scholar] [CrossRef]
- Mori, Y.; Yokoi, H. Studies on the interaction between iron(III) and glycerol or related polyols over a wide pH range. Bull. Chem. Soc. Jpn. 1994, 67, 2724–2730. [Google Scholar] [CrossRef]
- Kongdee, A.; Bechtold, T. The complexation of Fe(III)-ions in cellulose fibres: A fundamental property. Carbohy. Polym. 2004, 56, 47–53. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 4th ed.; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Seiler, J.P. The mutagenic activity of sodium perborate. Mutat. Res./Gen. Toxicol. 1989, 224, 219–227. [Google Scholar] [CrossRef]
- Moraes, E.C.; Keyse, S.M.; Tyrrell, R.M. Mutagenesis by hydrogen peroxide treatment of mammalian cells: A molecular analysis. Mutagenesis 1990, 11, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Lakes, A.; Dziubla, T. Chapter one–A free radical primer, In Oxidative Stress and Biomaterials; Dziubla, T., Butterfield, D.A., Eds.; Academic Press: Cambridge, UK, 2016; pp. 1–33. ISBN 9780128032695. Available online: http://www.sciencedirect.com/science/article/pii/B9780128032695000012 (accessed on 4 July 2020). [CrossRef]
- Rush, J.D.; Koppenol, W.H. Reactions of Fe(II)-ATP and Fe(II)-citrate complexes with t-butyl hydroperoxide and cumyl hydroperoxide. Febs. Lett. 1991, 280, 114–116. [Google Scholar] [CrossRef] [Green Version]
- Kern, D.M. A polarographic study of the perborate complex. J. Am. Chem. Soc. 1955, 77, 5458–5462. [Google Scholar] [CrossRef]
- Available online: http://www.h2o2.com/technical-library/physical-chemical-properties/thermodynamic-properties/default.aspx?pid=50&name=Standard-Electrode-Potentials (accessed on 30 June 2020).
- Devi, S.S.; Krishnamoorthy, P.; Muthukumaran, B. Iron(II) catalysis in perborate oxidation of 5-oxo acids. Int. J. Chemtech Res. 2015, 7, 2902–2910. [Google Scholar]
- Grootveld, M.; Halliwell, B. An aromatic hydroxylation assay for hydroxyl radicals utilising high performance liquid chromatography (HPLC). Use to investigate the effect of EDTA on the Fenton reaction. Free Rad. Res. Commun. 1985, 1, 243–250. [Google Scholar] [CrossRef]
- Rashba-Step, J.; Step, E.; Turro, N.J.; Cederbaum, A.J. Oxidation of glycerol to formaldehyde by microsomes: Are glycerol radicals produced in the reaction pathway? Biochemistry 1994, 33, 9504–9510. [Google Scholar] [CrossRef]
- Echavarria, A.P.; Pagan, J.; Ibarz, A. Melanoidins formed by Maillard reaction in food and their biological activity. Food Eng. Rev. 2012, 4, 203–223. [Google Scholar] [CrossRef]
- Kwak, E.; Soon, L.; Murata, M.; Homma, S. Effect of pH control on the intermediates and melanoidins of nonenzymatic browning reaction. Lwt Food Sci. Technol. 2005, 38, 1–6. [Google Scholar] [CrossRef]
- Frost, A.; Pearson, R. Kinetics and Mechanism, Second Edition. J. Phys. Chem. 1961, 65, 384. [Google Scholar] [CrossRef]
- Yao, J.; Lin, C.; Tao, T.; Lin, F. The effect of various concentrations of papain on the properties and hydrolytic rates of β-casein layers. Colloids Surf. B Biointerfaces. 2013, 101, 272–279. [Google Scholar] [CrossRef]
- Watts, A.; Addy, M. Tooth discolouration and staining: A review of the literature. Brit. Dent. J. 2001, 190, 309–316. [Google Scholar]
- Joiner, A. The bleaching of teeth: A review of the literature. J. Dent. 2006, 34, 412–419. [Google Scholar] [CrossRef]
- Féliz-Matos, L.; Hernández, L.M.; Abreu, N. Dental bleaching techniques; Hydrogen-carbamide peroxides and light sources for activation, an update. Open Dent. J. 2015, 8, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Ameri, H. Effects of different bleaching time interval on fracture toughness of enamel. J. Conser. Dent. 2011, 14, 73–75. [Google Scholar]
- Grobler, S.R.; Majeed, A.; Moola, M.H.; Rossow, R.J.; van Wyk Kotze, T. In vivo spectrophotometric assessment of the tooth whitening effectiveness of Nite White 10% with amorphous calcium phosphate, potassium nitrate and fluoride, over a 6-month period. Open Dent. J. 2011, 5, 18–23. [Google Scholar]
- Sun, L.; Liang, S.; Sa, Y.; Wang, Z.; Ma, X.; Jiang, T.; Wang, Y. Surface alteration of human tooth enamel subjected to acidic and neutral 30% hydrogen peroxide. J. Dent. 2011, 39, 686–692. [Google Scholar] [CrossRef]
- Chen, J.H.; Xu, J.W.; Shing, C.X. Decomposition rate of hydrogen peroxide bleaching agents under various chemical and physical conditions. J. Prosthet. Dent. 1993, 69, 46–48. [Google Scholar] [CrossRef]
- Feinman, R.A.; Madray, G.; Yarborough, D. Chemical, optical, and physiologic mechanisms of bleaching products: A review. Pr. Periodont. Aesthet. Dent. 1991, 3, 32–36. [Google Scholar]
- Coons, D.M. Bleach: Facts, fantasy, and fundamentals. J. Am. Oil Chem. Soc. 1978, 55, 104–108. [Google Scholar] [CrossRef]
- Torres, C.R.G.; Crastechini, E.; Feitosa, F.A.; Pucci, C.R.; Borges, A.B. Influence of pH on the effectiveness of hydrogen peroxide whitening. Oper. Dent. 2014, 39, E261–E268. [Google Scholar] [CrossRef] [Green Version]
- Brooks, R.E.; Moore, S.B. Alkaline hydrogen peroxide bleaching of cellulose. Cellulose 2000, 7, 263–286. [Google Scholar] [CrossRef]
- Abbot, J.; Brown, D.G. Kinetics of iron-catalyzed decomposition of hydrogen peroxide on alkaline solutions. Int. J. Kinet. 1990, 22, 963–974. [Google Scholar] [CrossRef]
- Duke, F.R.; Haas, T.W. The homogeneous base-catalyzed decomposition of hydrogen peroxide. J. Phys. Chem. 1961, 65, 304–306. [Google Scholar] [CrossRef]
- Koubek, E.; Haggett, M.L.; Battaglia, C.J.; Ibne-Rasa, K.M.; Pyun, H.Y.; Edwards, J.O. Kinetics and mechanism of the spontaneous decompositions of some peroxoacids, hydrogen peroxide and t-butyl hydroperoxide. J. Am. Chem. Soc. 1963, 85, 2263–2268. [Google Scholar] [CrossRef]
- Hayase, F.; Kim, S.B.; Kato, H. Decolorization and Degradation Products of the Melanoidins by Hydrogen Peroxide. Agric. Boil. Chem. 1984, 48, 2711–2717. [Google Scholar] [CrossRef]
- Tredwin, C.; Naik, S.; Lewis, N.J.; Scully, C. Hydrogen peroxide tooth-whitening (bleaching) products: Review of adverse effects and safety issues. Brit. Dent. J. 2006, 200, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M.; Grootveld, M.; Lynch, E. Undesirable and adverse effects of tooth-whitening products: A review. Clin. Oral Investig. 2010, 14, 1–10. [Google Scholar] [CrossRef]
- Kwon, S.R.; Wertz, P.W. The Mechanism of Tooth Whitening. J. Esthet. Restor. Dent. 2015, 27, 240–257. [Google Scholar] [CrossRef]
- Weiger, R.; Kuhn, A.; Lost, C. In vitro comparison of various types of sodium perborate used for intracoronal bleaching of discolored teeth. J. Endod. 1994, 20, 338–341. [Google Scholar] [CrossRef]
- Wiegand, A.; Drebenstedt, S.; Roos, M.; Magalhães, A.C.; Attin, T. 12-month color stability of enamel, dentine, and enamel-dentine samples after bleaching. Clin. Oral Investig. 2008, 12, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Rotstein, I.; Zalkind, M.; Mor, C.; Tarabeah, A.; Friedman, S. In vitro efficacy of sodium perborate preparations used for intracoronal bleaching of discoloured non-vital teeth. Endod. Dent. Traumatol. 1991, 7, 177–180. [Google Scholar] [CrossRef]
- Rotstein, I.; Mor, C.; Friedman, S. Prognosis of intracoronal bleaching with sodium perborate preparations in vivo: 1 year study. J. Endod 1993, 19, 10–12. [Google Scholar] [CrossRef]
- Ari, H.; Ungor, M. In vitro comparison of different types of sodium perborate used for intracoronal bleaching of discoloured teeth. Int. Endo. J. 2002, 35, 433–436. [Google Scholar] [CrossRef]
- Palo, R.M.; Valera, M.C.; Camargo, S.E.A.; Camargo, C.H.R.; Cardoso, P.E.; Mancini, M.N.G.; Pameijer, C.H. Peroxide penetration from the pulp chamber to the external root surface after internal bleaching. Am. J. Dent. 2010, 23, 171–174. [Google Scholar]
- Valera, M.C.; Camargo, C.H.; Carvalho, C.A.; de Oliveira, L.D.; Camargo, S.E.; Rodrigues, C.M. Effectiveness of carbamide peroxide and sodium perborate in non-vital discolored teeth. J. Appl. Oral Sci. 2009, 17, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Weiger, R.; Kuhn, A.; Löst, C. Effect of various types of sodium perborate on the pH of bleaching agents. J. Endodont. 1993, 19, 239–241. [Google Scholar] [CrossRef]
- Lewinstein, I.; Hirschfeld, Z.; Stabholz, A.; Rotstein, I. Effect of hydrogen peroxide and sodium perborate on the microhardness of human enamel and dentin. J. Endodont. 1994, 20, 61–63. [Google Scholar] [CrossRef]
- Ganesh, R.; Aruna, S.; Joyson, M. Comparison of the bleaching efficacy of three different agents used for intracoronal bleaching of discolored primary teeth: An in vitro study. J. Ind. Soc. Pedod. Prev. Dent. 2013, 31, 17–21. [Google Scholar] [CrossRef]
- Tran, L.; Orth, R.; Parashos, P.; Tao, Y.; Tee, C.W.L.; Towers, G.; Truong, D.T.; Vinen, C.; Reynolds, E.C. Depletion rate of hydrogen peroxide from sodium perborate bleaching agent. J. Endodont. 2017, 43, 472–476. [Google Scholar] [CrossRef]
- Julian, K.; Grootveld, M.; Silwood, C.J.L.; Blackburn, J.; Lynch, E. Bleaching of tooth discolouration compounds by peroxoborate-glycerol ester adducts. J. Dent. Res. 2006, 85B, 132. [Google Scholar]
- Chng, H.K.; Palamara, J.E.A.; Messer, H.H. Effect of hydrogen peroxide and sodium perborate on biomechanical properties of human dentin. J. Endodont. 2002, 28, 62–67. [Google Scholar] [CrossRef]
- International Agency for the Research on Cancer (IARC). Hydrogen Peroxide Vol 71. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1999. [Google Scholar]
- Tonzetich, J. Production and origin of oral malodor: A review of mechanisms and methods of analysis. J. Periodontol. 1977, 48, 13–20. [Google Scholar] [CrossRef]
- McNamara, T.F.; Alexander, J.F.; Lee, M. The role of microorganisms in the production of oral malodour. Oral Surg. Oral Med. Oral Pathol. 1972, 34, 41–48. [Google Scholar] [CrossRef]
- Tonzetich, J.; McBride, B.C. Characterization of volatile sulphur production by pathogenic and non-pathogenic strains of oral Bacteroides. Arch. Oral Biol. 1981, 26, 963–969. [Google Scholar] [CrossRef]
- Kleinberg, I.; Westbay, G. Oral Malodor. Crit. Rev. Oral Biol. Med. 1990, 1, 247–260. [Google Scholar] [CrossRef]
- Grootveld, K.L.; Lynch, E.; Grootveld, M. Twelve-hour longevity of the oral malodour-neutralising capacity of an oral rinse product containing the chlorine dioxide precursor sodium chlorite. J. Oral Health Dent. 2018, 1, 1–12. [Google Scholar]
- Kapoor, U.; Sharma, G.; Juneja, M.; Nagpal, A. Halitosis: Current concepts on etiology, diagnosis and management. Eur J. Dent. 2016, 10, 292–300. [Google Scholar] [CrossRef]
- Ratcliff, P.A.; Johnson, P.W. The relationship between oral malodor, gingivitis, and periodontitis. A Rev. J. Periodontol. 1999, 70, 485–489. [Google Scholar] [CrossRef]
- Hausdorf, G.; Kruger, K.; Kuttner, G.; Holzhutter, H.G.; Frommel, C.; Hohne, W.E. Oxidation of a methionine residue in subtilisin-type proteinases by the hydrogen peroxide/borate system—An active site-directed reaction. Biochem. Biophys. Acta 1988, 952, 20–26. [Google Scholar] [CrossRef]
- Stauffer, C.E.; Etson, D. The effect of subtilisin activity on oxidizing a methionine residue. J. Biol. Chem. 1969, 244, 5333–5338. [Google Scholar]
- Hunt, C.D. Dietary boron is a physiological regulator of the normal inflammatory response. Trace Elem. Man Anim. 2006, 10, 1071–1076. [Google Scholar]
- Vidal, F.; Figueredo, C.M.; Cordovil, I.; Fischer, R.G. Periodontal therapy reduces plasma levels of interleukin-6, C-reactive protein, and fibrinogen in patients with severe periodontitis and refractory arterial hypertension. J. Periodontol. 2009, 80, 786–791. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, B.; Zhu, D.; Yan, F. Biomarker levels in gingival crevicular fluid of subjects with different periodontal conditions: A cross-sectional study. Arch. Oral Biol. 2016, 72, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Boger, R.H. Asymmetric dimethylarginine: Understanding the physiology, genetics, and clinical relevance of this novel biomarker. Proceedings of the 4th International Symposium on ADMA. Pharm. Res. 2009, 60, 447. [Google Scholar] [CrossRef]
- Hampton, T.G.; Amende, I.; Fong, J.; E Laubach, V.; Li, J.; Metais, C.; Simons, M. Basic FGF reduces stunning via a NOS2-dependent pathway in coronary-perfused mouse hearts. Am. J. Physiol. Circ. Physiol. 2000, 279, H260–H268. [Google Scholar] [CrossRef] [PubMed]
- Colonna, V.D.G.; Bianchi, M.; Pascale, V.; Ferrario, P.; Morelli, F.; Pascale, W.; Tomasoni, L.; Turiel, M. Asymmetric dimethylarginine (ADMA): An endogenous inhibitor of nitric oxide synthase and a novel cardiovascular risk molecule. Med. Sci. Monit. 2009, 15, 91–101. [Google Scholar]
- May, M.; Batkai, S.; Zörner, A.A.; Tsikas, D.; Jordan, J.; Engeli, S. Clinical evaluation of extracellular ADMA concentrations in human blood and adipose tissue. Int. J. Mol. Sci. 2014, 15, 1189–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gee, J.C.; Williamson, R.C. Kinetics of hydrogen peroxide oxidation of alkyl dimethyl amines. J. Amer. Oil Chem. Soc. 1997, 74, 65–67. [Google Scholar] [CrossRef]
- Kumar, S.; Sun, X.; Wedgwood, S.; Black, S.M. Hydrogen peroxide decreases endothelial nitric oxide synthase promoter activity through the inhibition of AP-1 activity. Am. J. Physiol. Lung. Cell Mol. Physiol. 2008, 295, L370–L377. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Sun, X.; Wiseman, D.A.; Tian, J.; Umapathy, N.S.; Verin, A.D.; Black, S.M. Hydrogen peroxide decreases endothelial nitric oxide synthase promoter activity through the inhibition of Sp1 activity. Dna Cell Biol. 2009, 28, 119–129, PMCID:PMC2668153. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Alibrandi, A.; Currò, M.; Matarese, M.; Ricca, S.; Matarese, G.; Ientile, R.; Kocher, T. Evaluation of salivary and serum ADMA levels in patients with periodontal and cardiovascular disease as subclinical marker of cardiovascular risk. J. Periodontol. 2020, 10. [Google Scholar] [CrossRef]
- Isola, G.; Polizzi, A.; Muraglie, S.; Leonardi, R.; Lo Giudice, A. Assessment of vitamin C and antioxidant profiles in saliva and serum in patients with periodontitis and ischemic heart disease. Nutrients 2019, 11, 2956. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, J.C. Ascorbic acid oxidation by hydrogen peroxide. Anal. Biochem. 1998, 255, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, C.K.; Ibrahim, W.; Wei, Z.; Chan, A.C. Vitamin E regulates mitochondrial hydrogen peroxide generation. Free Rad. Biol. Med. 1999, 27, 580–587. [Google Scholar] [CrossRef]
- Botelho, J.; Machado, V.; Proença, L.; Ana Sintra Delgado, A.S.; Mendes, J.J. Vitamin D deficiency and oral health: A comprehensive review. Nutrients 2020, 12, 1471. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Alibrandi, A.; Rapisarda, E.; Matarese, G.; Williams, R.C.; Leonardi, R. Association of vitamin D in patients with periodontitis: A cross-sectional study. J. Periodontal Res. 2020, 00, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodani, F.; Perera, C.O.; Abernethy, G.; Greenwood, D.; Chen, H. Identification of vitamin D3 oxidation products using high-resolution and tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2018, 29, 1442–1455. [Google Scholar] [CrossRef]
- Jungert, A.; Neuhäuser-Berthold, M. Cross-sectional and longitudinal associations between serum 25-hydroxyvitamin D and anti-oxidative status in older adults. Exp. Gerontol. 2018, 110, 291–297. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grootveld, M.; Lynch, E.; Page, G.; Chan, W.; Percival, B.; Anagnostaki, E.; Mylona, V.; Bordin-Aykroyd, S.; Grootveld, K.L. Potential Advantages of Peroxoborates and Their Ester Adducts Over Hydrogen Peroxide as Therapeutic Agents in Oral Healthcare Products: Chemical/Biochemical Reactivity Considerations In Vitro, Ex Vivo And In Vivo. Dent. J. 2020, 8, 89. https://doi.org/10.3390/dj8030089
Grootveld M, Lynch E, Page G, Chan W, Percival B, Anagnostaki E, Mylona V, Bordin-Aykroyd S, Grootveld KL. Potential Advantages of Peroxoborates and Their Ester Adducts Over Hydrogen Peroxide as Therapeutic Agents in Oral Healthcare Products: Chemical/Biochemical Reactivity Considerations In Vitro, Ex Vivo And In Vivo. Dentistry Journal. 2020; 8(3):89. https://doi.org/10.3390/dj8030089
Chicago/Turabian StyleGrootveld, Martin, Edward Lynch, Georgina Page, Wyman Chan, Benita Percival, Eugenia Anagnostaki, Valina Mylona, Sonia Bordin-Aykroyd, and Kerry L. Grootveld. 2020. "Potential Advantages of Peroxoborates and Their Ester Adducts Over Hydrogen Peroxide as Therapeutic Agents in Oral Healthcare Products: Chemical/Biochemical Reactivity Considerations In Vitro, Ex Vivo And In Vivo" Dentistry Journal 8, no. 3: 89. https://doi.org/10.3390/dj8030089
APA StyleGrootveld, M., Lynch, E., Page, G., Chan, W., Percival, B., Anagnostaki, E., Mylona, V., Bordin-Aykroyd, S., & Grootveld, K. L. (2020). Potential Advantages of Peroxoborates and Their Ester Adducts Over Hydrogen Peroxide as Therapeutic Agents in Oral Healthcare Products: Chemical/Biochemical Reactivity Considerations In Vitro, Ex Vivo And In Vivo. Dentistry Journal, 8(3), 89. https://doi.org/10.3390/dj8030089