Reactivity and Bond Strength of Universal Dental Adhesives with Co-Cr Alloy and Zirconia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactivity with the Substrates
2.2. Roughness
2.3. Bond Strength
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Chen, C.; Niu, L.N.; Xie, H.; Zhang, Z.Y.; Zhou, L.Q.; Jiao, K.; Chen, J.H.; Pashley, D.H.; Tay, F.R. Bonding of universal adhesives to dentine—Old wine in new bottles? J. Dent. 2015, 43, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Rosa, W.L.; Piva, E.; Silva, A.F. Bond strength of universal adhesives: A systematic review and meta-analysis. J. Dent. 2015, 43, 765–776. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Frankenberger, R. Editorial: What’s next after “universal” adhesives, “bioactive” adhesives? J. Adhes. Dent. 2017, 19, 459–460. [Google Scholar] [CrossRef] [PubMed]
- Nagarkar, S.; Theis-Mahon, N.; Perdigao, J. Universal dental adhesives: Current status, laboratory testing, and clinical performance. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 34305, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Loguercio, A.D.; Munoz, M.A.; Luque-Martinez, I.; Hass, V.; Reis, A.; Perdigao, J. Does active application of universal adhesives to enamel in self-etch mode improve their performance? J. Dent. 2015, 43, 1060–1070. [Google Scholar] [CrossRef]
- Suzuki, S.; Takamizawa, T.; Imai, A.; Tsujimoto, A.; Sai, K.; Takimoto, M.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. Bond durability of universal adhesive to bovine enamel using self-etch mode. Clin. Oral Investig. 2018, 22, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- McLean, D.E.; Meyers, E.J.; Guillory, V.L.; Vandewalle, K.S. Enamel Bond Strength of New Universal Adhesive Bonding Agents. Oper. Dent. 2015, 40, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Lee, M.G.; Woo, S.U.; Lee, C.O.; Yi, J.K.; Kim, D.S. Comparative study of the dentin bond strength of a new universal adhesive. Dent. Mater. J. 2016, 35, 606–612. [Google Scholar] [CrossRef] [Green Version]
- Munoz, M.A.; Luque-Martinez, I.; Malaquias, P.; Hass, V.; Reis, A.; Campanha, N.H.; Loguercio, A.D. In vitro longevity of bonding properties of universal adhesives to dentin. Oper. Dent. 2015, 40, 282–292. [Google Scholar] [CrossRef]
- Thanatvarakorn, O.; Prasansuttiporn, T.; Takahashi, M.; Thittaweerat, S.; Foxton, R.M.; Ichinose, S.; Tagami, J.; Nakajima, M. Effect of Scrubbing Technique with Mild Self-etching Adhesives on Dentin Bond Strengths and Nanoleakage Expression. J. Adhes. Dent. 2016, 18, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Kaczor, K.; Gerula-Szymanska, A.; Smektala, T.; Safranow, K.; Lewusz, K.; Nowicka, A. Effects of different etching modes on the nanoleakage of universal adhesives: A systematic review and meta-analysis. J. Esthet. Restor. Dent. 2018, 30, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Takamizawa, T.; Barkmeier, W.W.; Tsujimoto, A.; Berry, T.P.; Watanabe, H.; Erickson, R.L.; Latta, M.A.; Miyazaki, M. Influence of different etching modes on bond strength and fatigue strength to dentin using universal adhesive systems. Dent. Mater. 2016, 32, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.; Belli, R.; Cesar, P.F.; Valandro, L.F.; Petschelt, A.; Lohbauer, U. The potential of novel primers and universal adhesives to bond to zirconia. J. Dent. 2014, 42, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Seabra, B.; Arantes-Oliveira, S.; Portugal, J. Influence of multimode universal adhesives and zirconia primer application techniques on zirconia repair. J. Prosthet. Dent. 2014, 112, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Li, Q.; Zhang, F.; Lu, Y.; Tay, F.R.; Qian, M.; Chen, C. Comparison of resin bonding improvements to zirconia between one-bottle universal adhesives and tribochemical silica coating, which is better? Dent. Mater. 2016, 32, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Hattan, M.A.; Pani, S.C.; Alomari, M. Composite bonding to stainless steel crowns using a new universal bonding and single-bottle systems. Int. J. Dent. 2013, 2013, 607405. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.S.; Kontham, U.R.; Kamath, A.; Kontham, R. Shear bond strength of composite resin bonded to preformed metal crowns for primary molars using a universal adhesive and two different surface treatments: An in vitro study. Eur. Arch. Paediatr. Dent. 2016, 17, 377–380. [Google Scholar] [CrossRef]
- ISO 29022:2013: Dentistry-Adhesion-Notched-Edge Shear Bond Strength; International Organization for Standardization: Geneva, Switzerland, 2013.
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Wilwerding, T.M.; Latta, M.A.; Miyazaki, M. Interfacial Characteristics and Bond Durability of Universal Adhesive to Various Substrates. Oper Dent. 2017, 42, E59–E70. [Google Scholar] [CrossRef]
- de Souza, G.; Hennig, D.; Aggarwal, A.; Tam, L.E. The use of MDP-based materials for bonding to zirconia. J. Prosthet. Dent. 2014, 112, 895–902. [Google Scholar] [CrossRef]
- Al Jeaidi, Z.A.; Alqahtani, M.A.; Awad, M.M.; Rodrigues, F.P.; Alrahlah, A.A. Bond strength of universal adhesives to air-abraded zirconia ceramics. J. Oral. Sci. 2017, 59, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Hallmann, L.; Ulmer, P.; Reusser, E.; Hämmerle, C.H.F. Effect of blasting pressure, abrasive particle size and grade on phase transformation and morphological change of dental zirconia surface. Surf. Coat. Technol. 2012, 206, 4293–4302. [Google Scholar] [CrossRef]
- Chintapalli, R.K.; Marro, F.G.; Jimenez-Pique, E.; Anglada, M. Phase transformation and subsurface damage in 3Y-TZP after sandblasting. Dent. Mater. 2013, 29, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Yu, W.Q.; Zhang, F.Q.; Smales, R.J.; Zhang, Y.L.; Lu, C.H. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing. Eur. J. Oral. Sci. 2011, 119, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Araki, Y.; Sagara, M. The adhesion mechanism of dental adhesive resin to the alloy—Relationship between Co-Cr alloy surface structure analyzed by ESCA and bonding strength of adhesive resin. Dent. Mater. J. 1986, 5, 46–65. [Google Scholar] [CrossRef] [PubMed]
- Yamane, Y.; Ohno, H.; Endo, K. Mechanism of adhesion between 4-META resin and alloys based on Bolger’s acid-base interaction. Dent. Mater. J. 2001, 20, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.; Thompson, V.P. Sandblasting and silica-coating of dental alloys: Volume loss, morphology and changes in the surface composition. Dent. Mater. 1993, 9, 151–161. [Google Scholar] [CrossRef]
- Kern, M.; Thompson, V.P. Durability of resin bonds to a cobalt-chromium alloy. J. Dent. 1995, 23, 47–54. [Google Scholar] [CrossRef]
- Li, W.; Pierre-Louis, A.M.; Kwon, K.D.; Kubicki, J.D.; Strongin, D.R.; Phillips, B.L. Molecular level investigations of phosphate sorption on corundum (α-Al2O3) by 31P solid state NMR, ATR-FTIR and quantum chemical calculation. Geochim. Cosmochim. Acta 2013, 107, 252–266. [Google Scholar] [CrossRef]
- Nishigawa, G.; Maruo, Y.; Irie, M.; Maeda, N.; Yoshihara, K.; Nagaoka, N.; Matsumoto, T.; Minagi, S. Various Effects of Sandblasting of Dental Restorative Materials. PLoS ONE 2016, 11, e0147077. [Google Scholar] [CrossRef]
- Nagaoka, N.; Yoshihara, K.; Feitosa, V.P.; Tamada, Y.; Irie, M.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Chemical interaction mechanism of 10-MDP with zirconia. Sci. Rep. 2017, 7, 45563. [Google Scholar] [CrossRef]
- Shimoe, S.; Hirata, I.; Otaku, M.; Matsumura, H.; Kato, K.; Satoda, T. Formation of chemical bonds on zirconia surfaces with acidic functional monomers. J. Oral. Sci. 2018, 60, 187–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilo, R.; Dimitriadi, M.; Palaghia, A.; Eliades, G. Effect of tribochemical treatments and silane reactivity on resin bonding to zirconia. Dent. Mater. 2018, 34, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Soldera, F.A.; Gaillard, Y.; Gomila, M.A.; Muecklich, F. FIB-Tomography of Nanoindentation Cracks in Zirconia Polycrystals. Microsc. Microanal. 2007, 13, 1510–1511. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Okihara, T.; Kuroboshi, M.; Hayakawa, S.; Maruo, Y.; Nishigawa, G.; De Munck, J.; Yoshida, Y.; Van Meerbeek, B. Functional monomer impurity affects adhesive performance. Dent. Mater. 2015, 31, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Zhou, L.; Zhang, Z.; Niu, L.; Zhang, L.; Chen, C.; Zhou, J.; Yang, H.; Wang, X.; Fu, B.; et al. Paucity of Nanolayering in Resin-Dentin Interfaces of MDP-based Adhesives. J. Dent. Res. 2016, 95, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Hanabusa, M.; Yoshihara, K.; Yoshida, Y.; Okihara, T.; Yamamoto, T.; Momoi, Y.; Van Meerbeek, B. Interference of functional monomers with polymerization efficiency of adhesives. Eur. J. Oral. Sci. 2016, 124, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Van Landuyt, K.L.; De Munck, J.; Snauwaert, J.; Coutinho, E.; Poitevin, A.; Yoshida, Y.; Inoue, S.; Peumans, M.; Suzuki, K.; Lambrechts, P.; et al. Monomer-solvent phase separation in one-step self-etch adhesives. J. Dent. Res. 2005, 84, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; De Munck, J.; Shirai, K.; Hikita, K.; Inoue, S.; Sano, H.; Lambrechts, P.; Van Meerbeek, B. Effect of evaporation of primer components on ultimate tensile strengths of primer-adhesive mixture. Dent. Mater. 2005, 21, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- DeHoff, P.H.; Anusavice, K.J.; Wang, Z. Three-dimensional finite element analysis of the shear bond test. Dent. Mater. 1995, 11, 126–131. [Google Scholar] [CrossRef]
- Gaintantzopoulou, M.; Rahiotis, C.; Eliades, G. Molecular characterization of one-step self-etching adhesives placed on dentin and inert substrate. J. Adhes. Dent. 2008, 10, 83–93. [Google Scholar]
- Papadogiannis, D.; Dimitriadi, M.; Zafiropoulou, M.; Gaintantzopoulou, M.D.; Eliades, G. Universal Adhesives: Setting Characteristics and Reactivity with Dentin. Materials 2019, 12, 1720. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, S.; Rawls, H.R.; Hotta, M. Relationship between thin-film bond strength as measured by a scratch test, and indentation hardness for bonding agents. Dent. Mater. 2016, 32, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Kern, M. Bonding to oxide ceramics-laboratory testing versus clinical outcome. Dent. Mater. 2015, 31, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Pashley, D.H.; Sano, H.; Ciucchi, B.; Yoshiyama, M.; Carvalho, R.M. Adhesion testing of dentin bonding agents: A review. Dent. Mater. 1995, 11, 117–125. [Google Scholar] [CrossRef]
Material | Composition * | Manufacturer |
---|---|---|
Adhese Universal (AD) | 10-MDP, 2-HEMA, BisGMA, MCAP, D3MA, highly dispersed silica, ethanol, water, photoinitiators (pH = 2.8) | Ivoclar-Vivadent, Schaan, Liechtenstein |
All-Bond Universal (AB) | 10-MDP, 2-HEMA, BisGMA, ethanol, water, photoinitiator (pH = 3.1) | Bisco, Schaumburg, IL, USA |
Clearfil Universal Bond (CB) | 10-MDP, 2-HEMA, BisGMA, hydrophilic aliphatic dimethacrylate, MPTMS, colloidal silica, photoinitiators (pH = 2.3) | Kuraray Noritake Dental, Okayama, Japan |
G-Premio Bond (GP) | 10-MDP, 4-MET, MTDP, methacrylic acid ester, silica, acetone, water, photoinitiators (pH = 1.5) | GC Corp., Tokyo, Japan |
Prelude One (PO) | 10-MDP, Methacryloyloxyalkyl acid carboxylate, 2-HEMA, BisGMA, ethanol (pH = 2.8) | Danville Materials, S. Ramon, CA, USA |
Scotchbond Universal Adhesive (SB) | 10-MDP, 2-HEMA, BisGMA, DCDMA, MPTMS, VP-copolymer, fumed silica, ethanol, water, photoinitiators (pH = 2.7) | 3M ESPE, St. Paul, MN, USA |
Substrate | Treatment | Sa (nm) | Sz (μm) | Sdr (%) | Sc (nm3/nm2) | Sv (nm3/nm2) |
---|---|---|---|---|---|---|
Co-Cr | Polished | 180 a (32) | 1.7 a (0.2) | 2.9 a (0.8) * | 232.2 a (23.4) | 14.9 a (2.4) * |
Alumina Blasted | 652 b (71) ** | 5.6 b (0.5) ** | 77 b (5.6) ** | 822.6 b (58.9) | 98.4 b (8.7) ** | |
3Y-TZP | Polished | 83 a (11) | 1.2 a (0.3) | 1.5 a (0.3) * | 122.8 a (10.8) | 15.9 a (4) * |
Alumina Blasted | 426 b (58) ** | 3.9 b (0.3) ** | 44 b (4.7) ** | 567.8 b (49.5) | 64.8 b (10.2) ** |
Co-Cr | Weibull Parameter | AB | AD | CB | GP | PO | SB |
---|---|---|---|---|---|---|---|
Polished | Shape-β (95% CI) | 12.3 a,A (7.8–19.3) | 18.3 a,D (11.0–30.3) | 16.2 a,G (9.9–26.7) | 9.5 a,J (5.9–15.3) | 17.9 a,O (11.4–28.0) | 16.1 a,S (10.1–25.6) |
Scale-σ0 (95% CI)/MPa | 28.6 a,B (27.1–30.2) | 33.6 b,E (32.4–34.8) | 35.1 b,H (33.7–36.5) | 17.8 c,L (16.6–19.2) | 28.6 a,P (27.6–29.7) | 30.9 a,T (29.6–32.3) | |
σ0.05 (95% CI)/MPa | 22.5 a,C (19.6–25.8) | 28.5 b,F (25.8–31.5) | 29.2 b,I (26.1–32.6) | 13.0 c,N (10.8–15.7) | 24.2 a,b,R (22.0–26.6) | 25.7 a,b,U (23.1–28.6) | |
r2 | 0.92 | 0.95 | 0.92 | 0.95 | 0.85 | 0.92 | |
Alumina Blasted | Shape-β (95% CI) | 15.1 a,A (9.4–24.1) | 12.8 a,D (7.9–20.8) | 14.7 a,G (9.1–23.8) | 3.6 b,K (2.3–5.6) | 16.2 a,O (10.4–25.3) | 14.2 a,S (8.8–23.1) |
Scale-σ0 (95% CI)/MPa | 29.1 a,B (27.9–30.4) | 32.2 b,E (30.6–33.9) | 29.4 a,b,H (28.2–30.8) | 10.0 c,M (8.4–12.0) | 31.3 a,b,Q (30.0–32.6) | 29.7 a,b,T (28.4–31.1) | |
σ0.05 (95% CI)/MPa | 23.9 a,C (21.3–26.8) | 25.5 a,F (22.2–29.3) | 24.1 a,I (21.4–27.1) | 4.4 b,N (2.8–6.9) | 24.1 a,R (21.3–27.3) | 26.1 a,U (23.5–28.9) | |
r2 | 0.94 | 0.94 | 0.92 | 0.84 | 0.68 | 0.94 |
3Y-TZP | Weibull Parameter | AB | AD | CB | GP | PO | SB |
---|---|---|---|---|---|---|---|
Polished | Shape-β | 30.3 a,A (17.9–51.4) | 10.3 b,E (6.1–17.4) | 16.8 a,b,H (10.3–27.2) | 6.7 b,K (4.2–10.7) | 13.7 b,N (8.5–21.9) | 11.2 b,Q (7.2–17.5) |
Scale-σ0 (95% CI)/MPa | 32.9 a,C (32.3–33.7) | 35.8 b,F (33.8–38.1) | 35.7 b,I (34.4–37.1) | 17.5 d,L (15.9–19.4) | 30.0 c,O (28.6–31.5) | 32.0 a,b,R (30.2–34.0) | |
σ0.05 (95%CI)/MPa | 29.9 a,D (28.1–31.8) | 26.8 a,b,G (22.3–32.1) | 29.9 a,J (26.9–33.2) | 11.2 c,M (8.7–14.8) | 24.2 b,P (21.3–27.5) | 24.6 b,S (21.2–28.5) | |
r2 | 0.85 | 0.96 | 0.98 | 0.98 | 0.91 | 0.91 | |
Alumina Blasted | Shape-β | 12.2 a,B (7.4–20.0) | 5.6 a,E (3.6–8.8) | 7.63 a,H (5.02–11.6) | 6.8 a,K (4.0–11.5) | 12.0 a,N (7.5–19.1) | 9.0 a,Q (5.7–14.5) |
Scale-σ0 (95%CI)/MPa | 33.4 a,C (31.7–35.3) | 36.6 a,F (32.6–41.2) | 36.3 a,I (33.2–39.5) | 19.7 b,L (17.9–21.7) | 28.8 c,O (27.2–30.4) | 31.4 a,c,R (29.2–33.7) | |
σ0.05 (95% CI)/MPa | 26.2 a,D (22.6–30.3) | 21.6 a,G (16.0–29.1) | 24.6 a,J (19.9–30.3) | 12.8 b,M (9.7–16.7) | 22.4 a,P (19.4–25.9) | 22.6 a,S (18.7–27.3) | |
r2 | 0.97 | 0.91 | 0.66 | 0.94 | 0.93 | 0.95 |
Treatment | Failure Mode | AB | AD | CB | GP | PO | SB | X2 | p |
---|---|---|---|---|---|---|---|---|---|
Co-Cr Polished | Type I | 7 | 6 | 7 | 8 | 7 | 6 | 1.31 | 0.93 |
Type III | 3 | 4 | 3 | 2 | 3 | 4 | |||
Co-Cr Alumina Blasted | Type I | 6 | 4 | 5 | 7 | 6 | 5 | 2.22 | 0.83 |
Type III | 4 | 6 | 5 | 3 | 4 | 5 | |||
X2 | 0.22 | 0.8 | 0.83 | 0.27 | 0.22 | 0.2 | |||
p | 0.64 | 0.37 | 0.36 | 0.61 | 0.64 | 0.65 | |||
3Y-TZP Polished | Type I | 8 | 9 | 9 | 10 | 10 | 9 | 3.71 | 0.59 |
Type III | 2 | 1 | 1 | 0 | 0 | 1 | |||
3Y-TZP Alumina Blasted | Type I | 7 | 8 | 7 | 10 | 10 | 8 | 6.72 | 0.24 |
Type III | 3 | 2 | 3 | 0 | 0 | 2 | |||
X2 | 0.27 | 0.39 | 1.25 | - | - | 0.39 | |||
p | 0.61 | 0.53 | 0.27 | - | - | 0.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadogiannis, D.; Dimitriadi, M.; Zafiropoulou, M.; Gaintantzopoulou, M.-D.; Eliades, G. Reactivity and Bond Strength of Universal Dental Adhesives with Co-Cr Alloy and Zirconia. Dent. J. 2019, 7, 78. https://doi.org/10.3390/dj7030078
Papadogiannis D, Dimitriadi M, Zafiropoulou M, Gaintantzopoulou M-D, Eliades G. Reactivity and Bond Strength of Universal Dental Adhesives with Co-Cr Alloy and Zirconia. Dentistry Journal. 2019; 7(3):78. https://doi.org/10.3390/dj7030078
Chicago/Turabian StylePapadogiannis, Dimitris, Maria Dimitriadi, Maria Zafiropoulou, Maria-Dimitra Gaintantzopoulou, and George Eliades. 2019. "Reactivity and Bond Strength of Universal Dental Adhesives with Co-Cr Alloy and Zirconia" Dentistry Journal 7, no. 3: 78. https://doi.org/10.3390/dj7030078
APA StylePapadogiannis, D., Dimitriadi, M., Zafiropoulou, M., Gaintantzopoulou, M. -D., & Eliades, G. (2019). Reactivity and Bond Strength of Universal Dental Adhesives with Co-Cr Alloy and Zirconia. Dentistry Journal, 7(3), 78. https://doi.org/10.3390/dj7030078