Multi-Class Malocclusion Detection on Standardized Intraoral Photographs Using YOLOv11
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Data
3.2. Evaluation Metrics
3.3. Overall Accuracy and Class-Wise Accuracy on the Test Set
3.4. View-Wise Patterns
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 2D | Two-dimensional |
| 3D | Three-dimensional |
| AI | Artificial intelligence |
| AP | Average precision |
| AP@0.5 | Average precision at IoU 0.5 |
| AdamW | Adam optimizer with decoupled weight decay |
| CBCT | Cone-beam computed tomography |
| CNN | Convolutional neuronal network |
| COCO | Common objects in context (dataset) |
| EXIF | Exchangeable image file format |
| F1 | Harmonic mean of precision and recall |
| FN | False negative |
| FP | False positive |
| GAN | Generative adversarial network |
| IoU | Intersection over union |
| IOTN | Index of Orthodontic Treatment Need |
| mAP | Mean average precision |
| mAP50 | Mean average precision at IoU 0.5 |
| ML | Machine learning |
| P | Precision |
| PR | Precision–recall |
| R | Recall |
| TP | True positive |
| YOLO | You Only Look Once |
| YOLOv11 | You Only Look Once, version 11 |
References
- Goodlin, R. Photographic-assisted diagnosis and treatment planning. Dent. Clin. N. Am. 2011, 55, 211–227. [Google Scholar] [CrossRef]
- Lauweryns, I.; van Cauwenberghe, N.; Carels, C. Interobserver and intraobserver agreement of clinical orthodontic judgments based on intraoral and extraoral photographs. Angle Orthod. 1994, 64, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Keeling, S.D.; McGorray, S.; Wheeler, T.T.; King, G.J. Imprecision in orthodontic diagnosis: Reliability of clinical measures of malocclusion. Angle Orthod. 1996, 66, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Göranson, E.; Sonesson, M.; Gullbrand, M.; Isberg, P.-E.; Dimberg, L. The Reliability and Validity of Intraoral Photographs in Assessing Orthodontic Treatment Need. Orthod. Craniofac. Res. 2025, 28, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Kim, Y.-H.; Kim, T.-W.; Jung, S.-K. Evaluation of artificial intelligence model for crowding categorization and extraction diagnosis using intraoral photographs. Sci. Rep. 2023, 13, 5177. [Google Scholar] [CrossRef]
- Noeldeke, B.; Vassis, S.; Sefidroodi, M.; Pauwels, R.; Stoustrup, P. Comparison of deep learning models to detect crossbites on 2D intraoral photographs. Head Face Med. 2024, 20, 45. [Google Scholar] [CrossRef]
- Ozsunkar, P.S.; Özen, D.Ç.; Abdelkarim, A.Z.; Duman, S.; Uğurlu, M.; Demİr, M.R.; Kuleli, B.; Çelİk, Ö.; Imamoglu, B.S.; Bayrakdar, I.S.; et al. Detecting white spot lesions on post-orthodontic oral photographs using deep learning based on the YOLOv5x algorithm: A pilot study. BMC Oral Health 2024, 24, 490. [Google Scholar] [CrossRef]
- Hertig, G.; van Nistelrooij, N.; Schols, J.; Xi, T.; Vinayahalingam, S.; Patcas, R. Quantitative tooth crowding analysis in occlusal intra-oral photographs using a convolutional neural network. Eur. J. Orthod. 2025, 47, cjaf025. [Google Scholar] [CrossRef]
- Xue, P.; Ge, J.; Jiang, X.; Song, S.; Wu, Z.; Huo, Y.; Xie, W.; Shen, L.; Zhou, X.; Liu, X.; et al. Oral Imaging for Malocclusion Issues Assessments: OMNI Dataset, Deep Learning Baselines and Benchmarking. arXiv 2025. [Google Scholar] [CrossRef]
- Frenkel, E.; Neumayr, J.; Schwarzmaier, J.; Kessler, A.; Ammar, N.; Schwendicke, F.; Kühnisch, J.; Dujic, H. Caries Detection and Classification in Photographs Using an Artificial Intelligence-Based Model—An External Validation Study. Diagnostics 2024, 14, 2281. [Google Scholar] [CrossRef]
- Albano, D.; Galiano, V.; Basile, M.; Di Luca, F.; Gitto, S.; Messina, C.; Cagetti, M.G.; Del Fabbro, M.; Tartaglia, G.M.; Sconfienza, L.M. Artificial intelligence for radiographic imaging detection of caries lesions: A systematic review. BMC Oral Health 2024, 24, 274. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLO. Ultralytics. Available online: https://github.com/ultralytics/ultralytics (accessed on 31 December 2025).
- Tkachenko, M.; Malyuk, M.; Holmanyuk, A.; Liubimov, N. Label Studio: Data Labeling Software. HumanSignal. Available online: https://github.com/HumanSignal/label-studio (accessed on 31 December 2025).
- Brook, P.H.; Shaw, W.C. The development of an index of orthodontic treatment priority. Eur. J. Orthod. 1989, 11, 309–320. [Google Scholar] [CrossRef]
- Khanam, R.; Hussain, M. YOLOv11: An Overview of the Key Architectural Enhancements. arXiv 2024. [Google Scholar] [CrossRef]
- Cubuk, E.D.; Zoph, B.; Shlens, J.; Le, V.Q. RandAugment: Practical automated data augmentation with a reduced search space. arXiv 2019. [Google Scholar] [CrossRef]
- American Board of Orthodontics. Ideal Photographs and Radiographs. Available online: https://www.americanboardortho.com/media/1206/example-photos-radiographs.pdf (accessed on 31 December 2025).
- American Board of Orthodontics. Photograph Requirements. Available online: https://www.americanboardortho.com/orthodontists/become-certified/clinical-exam/mail-in-cre-submission-procedure/case-record-preparation/photograph-requirements/ (accessed on 31 December 2025).
- Institute of Medical Illustrators. National Guidelines—Orthodontic Clinical Photography; Institute of Medical Illustrators: London, UK, 2025; Available online: https://www.imi.org.uk/wp-content/uploads/2019/01/IMINatGuidelinesOrthodonticPhotography_1-ilovepdf-compressed.pdf (accessed on 31 December 2025).
- Chen, W.; Yang, K.; Yu, Z.; Shi, Y.; Chen, C.L.P. A survey on imbalanced learning: Latest research, applications and future directions. Artif. Intell. Rev. 2024, 57, 137. [Google Scholar] [CrossRef]
- Zhang, L.; Tanno, R.; Xu, M.; Huang, Y.; Bronik, K.; Jin, C.; Jacob, J.; Zheng, Y.; Shao, L.; Ciccarelli, O.; et al. Learning from multiple annotators for medical image segmentation. Pattern Recognit. 2023, 138, 109400. [Google Scholar] [CrossRef]
- Bardideh, E.; Lal Alizadeh, F.; Amiri, M.; Ghorbani, M. Designing an artificial intelligence system for dental occlusion classification using intraoral photographs: A comparative analysis between artificial intelligence-based and clinical diagnoses. Am. J. Orthod. Dentofac. Orthop. 2024, 166, 125–137. [Google Scholar] [CrossRef]
- Azimi, S.; Estai, M.; Patel, J.; Silva, D. The feasibility of a digital health approach to facilitate remote dental screening among preschool children during COVID-19 and social restrictions. Int. J. Paediatr. Dent. 2023, 33, 234–245. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, L.; Zhang, D.; Wang, Y.; Huang, Y.; Wang, D.; Xu, L. Development and evaluation of a deep learning model for occlusion classification in intraoral photographs. PeerJ 2025, 13, e20140. [Google Scholar] [CrossRef] [PubMed]
- Elnagar, M.H.; Nieberg-Baskin, H.; Becher, M.K.; Mellion, Z.J.; Borello, B.R.; Wilk, B.; Skafi, R. Assessing an AI-driven remote monitoring system for reliable clinical photo acquisition and patient usability. J. World Fed. Orthod. 2025, 14, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Rischen, R.J.; Breuning, K.H.; Bronkhorst, E.M.; Kuijpers-Jagtman, A.M. Records needed for orthodontic diagnosis and treatment planning: A systematic review. PLoS ONE 2013, 8, e74186. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Yap, P.-T.; Bozoki, A.; Liu, M. Federated learning for medical image analysis: A survey. Pattern Recognit. 2024, 151, 110424. [Google Scholar] [CrossRef]
- Jackson, T.H.; Kirk, C.J.; Phillips, C.; Koroluk, L.D. Diagnostic accuracy of intraoral photographic orthodontic records. J. Esthet. Restor. Dent. 2019, 31, 64–71. [Google Scholar] [CrossRef]
- Kocakaya, D.N.C.; Özel, M.B.; Kartbak, S.B.A.; Çakmak, M.; Sinanoğlu, E.A. Profile Photograph Classification Performance of Deep Learning Algorithms Trained Using Cephalometric Measurements: A Preliminary Study. Diagnostics 2024, 14, 1916. [Google Scholar] [CrossRef]
- Liao, Z.; Hu, S.; Xie, Y.; Xia, Y. Modeling annotator preference and stochastic annotation error for medical image segmentation. arXiv 2021. [Google Scholar] [CrossRef]
- Le, H.K.; Tran, T.V.; Pham, H.H.; Nguyen, H.T.; Le, T.T.; Nguyen, H.Q. Learning from Multiple Expert Annotators for Enhancing Anomaly Detection in Medical Image Analysis. arXiv 2022. [Google Scholar] [CrossRef]
- Shahrul, A.I.; Mohd Shukor, N.; Norman, N.H. Techniques for Capturing Clinical Photographs in Orthodontics. Cureus 2024, 16, e73629. [Google Scholar] [CrossRef]
- Kokomoto, K.; Okawa, R.; Nakano, K.; Nozaki, K. Intraoral image generation by progressive growing of generative adversarial network and evaluation of generated image quality by dentists. Sci. Rep. 2021, 11, 18517. [Google Scholar] [CrossRef]
- Sukegawa, S.; Yoshii, K.; Hara, T.; Tanaka, F.; Taki, Y.; Inoue, Y.; Yamashita, K.; Nakai, F.; Nakai, Y.; Miyazaki, R.; et al. Optimizing dental implant identification using deep learning leveraging artificial data. Sci. Rep. 2025, 15, 3724. [Google Scholar] [CrossRef]







| Malocclusion (Classification) | Labeling Guidelines/Bounding Box (BB) Instructions |
|---|---|
| Angle Class II molar, Angle Class III molar | BB over the first maxillary and mandibular molar |
| Angle Class II canine, Angle Class III canine | BB over the affected upper and lower canines, as well as the first lower premolar |
| Crowding | BB over the affected tooth as well as the two adjacent teeth |
| Spacing | BB over the existing gap as well as the two adjacent teeth |
| Transposition | BB over the affected teeth |
| Big overjet, Anterior crossbite, Deep bite, Head bite, Anterior open bite | BB over the four upper incisors as well as the overlapping lower canines and incisors |
| Posterior open bite, Posterior crossbite, Non-occlusion | BB over the affected posterior teeth |
| Midline shift | BB over the upper central incisors as well as the overlapping lower incisors and canines |
| Diastema | BB over the upper central incisors |
| Malocclusion (Classification) | Definition of the Malocclusion |
|---|---|
| Angle Class II canine | The maxillary canine cusp tip is positioned mesial/anterior to the ideal embrasure between the mandibular canine and 1st premolar |
| Angle Class II molar | The mesiobuccal cusp of the maxillary 1st molar is anterior/mesial to the buccal groove of the mandibular 1st molar |
| Angle Class III canine | The maxillary canine cusp tip is positioned distal to the ideal embrasure between the mandibular canine and 1st premolar |
| Angle Class III molar | The mesiobuccal cusp of the maxillary 1st molar is posterior/distal to the buccal groove of the mandibular 1st molar |
| Anterior crossbite | One or more maxillary incisors occlude lingual/palatal to the mandibular incisors |
| Anterior open bite | No vertical overlap of anterior teeth in occlusion; a visible gap remains between upper and lower incisors when posterior teeth are in contact |
| Big overjet | Increased horizontal overlap: maxillary incisors are clearly far ahead of mandibular incisors (photo-based; in our case, that would correspond to more than 5 mm clinically) |
| Crowding | Insufficient space in the arch, causing overlapping, rotations, or displacement of teeth |
| Deep bite | Mandibular incisors are covered too much by maxillary incisors (>50% coverage) |
| Diastema | A distinct midline gap between the maxillary central incisors, beyond normal contact separation |
| Head bite | Incisal edge-to-edge relationship: upper and lower incisors meet edge-to-edge with ~0 overjet |
| Midline shift | The upper and lower dental midlines do not coincide (visible mismatch between the contact points of the central incisors) |
| Posterior crossbite | One or more posterior teeth occlude in reverse transverse relationship: maxillary posterior teeth are positioned lingual/palatal to mandibular posterior teeth |
| Posterior open bite | No occlusal contact in the posterior segment despite attempted occlusion; a visible vertical gap between posterior antagonists |
| Spacing | When no contact point was present and gingiva was visible between the teeth; midline diastema was excluded |
| Transposition | Two teeth exchange positions in the arch |
| Non-occlusion | Non-intercuspation due to transverse “pass-by”: posterior teeth do not occlude because the maxillary segment passes buccally or lingually to the mandibular antagonists (e.g., scissor/Brodie-type non-occlusion) |
| Training Set | Test Set | |||
|---|---|---|---|---|
| Category | Images | Instances | Images | Instances |
| All | 5364 | 12,301 | 490 | 1327 |
| Angle Class II canine | 828 | 828 | 90 | 90 |
| Angle Class II molar | 372 | 372 | 45 | 45 |
| Angle Class III canine | 225 | 225 | 25 | 25 |
| Angle Class III molar | 327 | 327 | 36 | 36 |
| Anterior crossbite | 177 | 177 | 20 | 20 |
| Anterior open bite | 210 | 210 | 18 | 18 |
| Big overjet | 181 | 181 | 22 | 22 |
| Crowding | 1235 | 5087 | 133 | 545 |
| Deep bite | 1173 | 1174 | 128 | 128 |
| Diastema | 334 | 340 | 38 | 40 |
| Head bite | 352 | 353 | 41 | 41 |
| Midline shift | 684 | 684 | 69 | 69 |
| Posterior crossbite | 400 | 459 | 44 | 50 |
| Posterior open bite | 331 | 379 | 37 | 42 |
| Spacing | 588 | 1505 | 66 | 156 |
| Class | Precision | Recall | AP |
|---|---|---|---|
| Angle Class II canine | 0.892 | 0.920 | 0.975 |
| Angle Class II molar | 0.781 | 0.870 | 0.911 |
| Angle Class III canine | 0.679 | 0.840 | 0.760 |
| Angle Class III molar | 0.837 | 0.778 | 0.874 |
| Anterior crossbite | 0.800 | 0.850 | 0.883 |
| Anterior open bite | 0.666 | 1.000 | 0.928 |
| Big overjet | 0.622 | 0.824 | 0.753 |
| Crowding | 0.779 | 0.848 | 0.901 |
| Deep bite | 0.952 | 0.977 | 0.988 |
| Diastema | 0.884 | 0.950 | 0.979 |
| Head bite | 0.630 | 0.829 | 0.827 |
| Midline shift | 0.797 | 0.969 | 0.918 |
| Posterior crossbite | 0.710 | 0.660 | 0.756 |
| Posterior open bite | 0.694 | 0.754 | 0.802 |
| Spacing | 0.815 | 0.853 | 0.910 |
| Mean | 0.769 | 0.861 | 0.878 |
| Category | Frontal Occlusion | Left and Right Buccal Occlusion | Maxillary and Mandibular Occlusal |
|---|---|---|---|
| Angle Class II canine | 2 | 916 | 0 |
| Angle Class II molar | 2 | 415 | 0 |
| Angle Class III canine | 0 | 250 | 0 |
| Angle Class III molar | 0 | 363 | 0 |
| Anterior crossbite | 71 | 126 | 0 |
| Anterior open bite | 88 | 140 | 0 |
| Big overjet | 9 | 194 | 0 |
| Crowding | 0 | 4 | 5628 |
| Deep bite | 411 | 891 | 0 |
| Diastema | 211 | 4 | 165 |
| Head bite | 146 | 247 | 0 |
| Midline shift | 748 | 5 | 0 |
| Posterior crossbite | 222 | 287 | 0 |
| Posterior open bite | 110 | 311 | 0 |
| Spacing | 0 | 7 | 1654 |
| Category | Frontal Occlusion | Left and Right Buccal Occlusion | Maxillary and Mandibular Occlusal |
|---|---|---|---|
| Angle Class II canine | - | 0.975 | - |
| Angle Class II molar | - | 0.911 | - |
| Angle Class III canine | - | 0.760 | - |
| Angle Class III molar | - | 0.876 | - |
| Anterior crossbite | 0.848 | 0.886 | - |
| Anterior open bite | 0.897 | 0.972 | - |
| Big overjet | 0.497 | 0.774 | - |
| Crowding | - | - | 0.901 |
| Deep bite | 0.993 | 0.986 | - |
| Diastema | 0.978 | - | 0.988 |
| Head bite | 0.823 | 0.842 | - |
| Midline shift | 0.919 | - | - |
| Posterior crossbite | 0.820 | 0.720 | - |
| Posterior open bite | 0.698 | 0.843 | - |
| Spacing | - | - | 0.910 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Nebiaj, A.; Mühling, M.; Freisleben, B.; Sayahpour, B. Multi-Class Malocclusion Detection on Standardized Intraoral Photographs Using YOLOv11. Dent. J. 2026, 14, 60. https://doi.org/10.3390/dj14010060
Nebiaj A, Mühling M, Freisleben B, Sayahpour B. Multi-Class Malocclusion Detection on Standardized Intraoral Photographs Using YOLOv11. Dentistry Journal. 2026; 14(1):60. https://doi.org/10.3390/dj14010060
Chicago/Turabian StyleNebiaj, Ani, Markus Mühling, Bernd Freisleben, and Babak Sayahpour. 2026. "Multi-Class Malocclusion Detection on Standardized Intraoral Photographs Using YOLOv11" Dentistry Journal 14, no. 1: 60. https://doi.org/10.3390/dj14010060
APA StyleNebiaj, A., Mühling, M., Freisleben, B., & Sayahpour, B. (2026). Multi-Class Malocclusion Detection on Standardized Intraoral Photographs Using YOLOv11. Dentistry Journal, 14(1), 60. https://doi.org/10.3390/dj14010060

