Porcelain Fused to Titanium—Advantages and Challenges
Abstract
1. Introduction
2. Titanium Alloys in Dental Prosthetics
3. Titanium Framework Production
4. Metal–Ceramic Bond Strength, Surface Treatment
- –
- Mechanical surface treatment—sandblasting, airborne particle abrasion (APA)
- –
- Physical surface treatment—laser treatment
- –
- Chemical and electrochemical surface treatment—etching, anodization, microarc oxidation (MAO)
- –
- Bonding agent application
- –
- Biomimetic surface morphology creation
- –
- Combined surface treatment
5. Internal Fit, Marginal Fit
6. Color and Esthetics
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
APA | airborne particle abrasion |
Cp Ti | commercially pure titanium |
CAD/CAM | computer-aided design/computer-aided manufacturing |
SLM | selective laser melting |
SLS | selective laser sintering |
EBM | electron beam melting |
UVI | ultraviolet irradiation |
MAO | micro-arc oxidation |
HA | hydroxyapatite |
Nd:YAG | neodymium-doped yttrium aluminum garnet |
References
- Alsterstål-Englund, H.; Moberg, L.-E.; Petersson, J.; Smedberg, J.-I. A retrospective clinical evaluation of extensive tooth-supported fixed dental prostheses after 10 years. J. Prosthet. Dent. 2021, 125, 65–72. [Google Scholar] [CrossRef]
- Givan, D.A. Precious metals in dentistry. Dent. Clin. N. Am. 2007, 51, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Roach, M. Base metal alloys used for dental restorations and implants. Dent. Clin. N. Am. 2007, 51, 603–627. [Google Scholar] [CrossRef] [PubMed]
- Vaicelyte, A.; Janssen, C.; Borgne, M.L.; Grosgogeat, B. Cobalt–Chromium Dental Alloys: Metal Exposures, Toxicological Risks, CMR Classification, and EU Regulatory Framework. Crystals 2020, 10, 1151. [Google Scholar] [CrossRef]
- Koizumi, H.; Takeuchi, Y.; Imai, H.; Kawai, T.; Yoneyama, T. Application of titanium and titanium alloys to fixed dental prostheses. J. Prosthodont. Res. 2019, 63, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Lian, S.-F.; Lin, C.-K.; Tsai, K.-T.; Chang, Y.-H. Study on fatigue and fracture resistance of metal ceramic crowns with CAD/CAM-fabricated titanium copings. Shanghai Kou Qiang Yi Xue 2019, 28, 118–122. [Google Scholar]
- Gao, C.; Wang, C.; Jin, H.; Wang, Z.; Li, Z.; Shi, C.; Leng, Y.; Yang, F.; Liu, H.; Wang, J. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv. 2018, 8, 25210–25227. [Google Scholar] [CrossRef]
- Sarraf, M.; Rezvani Ghomi, E.; Alipour, S.; Ramakrishna, S.; Liana Sukiman, N. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-Design Manuf. 2022, 5, 371–395. [Google Scholar] [CrossRef]
- Dias Corpa Tardelli, J.; Bolfarini, C.; Cândido Dos Reis, A. Comparative analysis of corrosion resistance between beta titanium and Ti-6Al-4V alloys: A systematic review. J. Trace Elem. Med. Biol. Organ. Soc. Min. Trace Elem. 2020, 62, 126618. [Google Scholar] [CrossRef]
- Available online: https://www.dentalmastermed.com/application-of-titanium-and-titanium-alloys-in-dentistry (accessed on 20 August 2025).
- Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 102, 844–862. [Google Scholar] [CrossRef]
- Standard Specification for Powder Metallurgy (PM) Titanium and Titanium Alloy Structural Components. Available online: https://www.astm.org/b0988-18r22.html (accessed on 20 August 2025).
- Standard Specification for Titanium and Titanium Alloy Castings. Available online: https://www.astm.org/b0367-13r17.html (accessed on 20 August 2025).
- Eliaz, N. Corrosion of metallic biomaterials: A review. Materials 2019, 12, 407. [Google Scholar] [CrossRef]
- Prestat, M.; Thierry, D. Corrosion of titanium under simulated inflammation conditions: Clinical context and in vitro investigations. Acta Biomater. 2021, 136, 72–87. [Google Scholar] [CrossRef]
- Chen, W.-Q.; Zhang, S.-M.; Qiu, J. Surface analysis and corrosion behavior of pure titanium under fluoride exposure. J. Prosthet. Dent. 2020, 124, 239.e1–239.e8. [Google Scholar] [CrossRef]
- Zhong, Q.; Pan, X.; Chen, Y.; Lian, Q.; Gao, J.; Xu, Y.; Wang, J.; Shi, Z.; Cheng, H. Prosthetic Metals: Release, Metabolism and Toxicity. Int. J. Nanomed. 2024, 19, 5245–5267. [Google Scholar] [CrossRef] [PubMed]
- Ellakany, P.; AlGhamdi, M.A.; Alshehri, T.; Abdelrahman, Z. Cytotoxicity of Commercially Pure Titanium (cpTi), Silver-Palladium (Ag-Pd), and Nickel-Chromium (Ni-Cr) Alloys Commonly Used in the Fabrication of Dental Prosthetic Restorations. Cureus 2022, 14, e31679. [Google Scholar] [CrossRef] [PubMed]
- Turkina, A.Y.; Makeeva, I.M.; Dubinin, O.N.; Bondareva, J.V.; Chernodoubov, D.A.; Shibalova, A.A.; Arzukanyan, A.V.; Antoshin, A.A.; Timashev, P.S.; Evlashin, S.A. The Impact of Commercially Available Dry Mouth Products on the Corrosion Resistance of Common Dental Alloys. Materials 2023, 16, 4195. [Google Scholar] [CrossRef] [PubMed]
- Bilhan, H.; Bilgin, T.; Cakir, A.F.; Yuksel, B.; Von Fraunhofer, J.A. The effect of mucine, IgA, urea, and lysozyme on the corrosion behavior of various non-precious dental alloys and pure titanium in artificial saliva. J. Biomater. Appl. 2007, 22, 197–221. [Google Scholar] [CrossRef]
- Gaur, S.; Agnihotri, R.; Albin, S. Bio-Tribocorrosion of Titanium Dental Implants and Its Toxicological Implications: A Scoping Review. Sci. World J. 2022, 2022, 4498613. [Google Scholar] [CrossRef]
- Abey, S.; Mathew, M.T.; Lee, D.J.; Knoernschild, K.L.; Wimmer, M.A.; Sukotjo, C. Electrochemical behavior of titanium in artificial saliva: Influence of pH. J. Oral Implant. 2014, 40, 3–10. [Google Scholar] [CrossRef]
- Fage, S.W.; Muris, J.; Jakobsen, S.S.; Thyssen, J.P. Titanium: A review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermat. 2016, 74, 323–345. [Google Scholar] [CrossRef]
- Faverani, L.P.; Barão, V.A.R.; Ramalho-Ferreira, G.; Ferreira, M.B.; Garcia-Júnior, I.R.; Assunção, W.G. Effect of bleaching agents and soft drink on titanium surface topography. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 22–30. [Google Scholar] [CrossRef]
- Hanawa, T. Biocompatibility of titanium from the viewpoint of its surface. Sci. Technol. Adv. Mater. 2022, 23, 457–472. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Sun, H.; Liu, Y.; Liu, Z.; Zhang, D.; Zhao, G.; Wang, Q.; Yang, D. The progress in titanium alloys used as biomedical implants: From the view of reactive oxygen species. Front. Bioeng. Biotechnol. 2022, 10, 1092916. [Google Scholar] [CrossRef]
- Swalsky, A.; Noumbissi, S.S.; Wiedemann, T.G. The systemic and local interactions related to titanium implant corrosion and hypersensitivity reactions: A narrative review of the literature. Int. J. Implant. Dent. 2024, 10, 58. [Google Scholar] [CrossRef]
- Holm, C.; Morisbak, E.; Kalfoss, T.; Dahl, J.E. In vitro element release and biological aspects of base-metal alloys for metal-ceramic applications. Acta Biomater. Odontol. Scand. 2015, 1, 70–75. [Google Scholar] [CrossRef]
- Lautenschlager, E.P.; Monaghan, P. Titanium and titanium alloys as dental materials. Int. Dent. J. 1993, 43, 245–253. [Google Scholar]
- Korkmaz, C. Effect of different production techniques on the color of porcelain-fused-to-titanium restorations. Heliyon 2024, 10, e24950. [Google Scholar] [CrossRef] [PubMed]
- Papia, E.; Arnoldsson, P.; Baudinova, A.; Jimbo, R.; Vult VON Steyern, P. Cast, milled and EBM-manufactured titanium, differences in porcelain shear bond strength. Dent. Mater. J. 2018, 37, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Marin, E.; Lanzutti, A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials 2023, 17, 114. [Google Scholar] [CrossRef]
- Trevisan, F.; Calignano, F.; Aversa, A.; Marchese, G.; Lombardi, M.; Biamino, S.; Ugues, D.; Manfredi, D. Additive manufacturing of titanium alloys in the biomedical field: Processes, properties and applications. J. Appl. Biomater. Funct. Mater. 2018, 16, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Tshephe, T.S.; Akinwamide, S.O.; Olevsky, E.; Olubambi, P.A. Additive manufacturing of titanium-based alloys- A review of methods, properties, challenges, and prospects. Heliyon 2022, 8, e09041. [Google Scholar] [CrossRef]
- Cuschieri, L.A.; Casha, A.; No-Cortes, J.; Ferreira Lima, J.; Cortes, A.R.G. Patient Satisfaction with Anterior Interim CAD-CAM Rehabilitations Designed by CAD Technician versus Trained Dentist—A Clinical Preliminary Study. Appl. Sci. 2023, 13, 8243. [Google Scholar] [CrossRef]
- Gu, D. Laser Additive Manufacturing (AM): Classification, Processing Philosophy, and Metallurgical Mechanisms. In Laser Additive Manufacturing of High-Performance Materials; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Barbin, T.; Velôso, D.V.; Silva, L.D.R.; Borges, G.A.; Presotto, A.G.C.; Barão, V.A.R.; Mesquita, M.F. 3D metal printing in dentistry: An in vitro biomechanical comparative study of two additive manufacturing technologies for full-arch implant-supported prostheses. J. Mech. Behav. Biomed. Mater. 2020, 108, 103821. [Google Scholar] [CrossRef]
- Harada, Y.; Ishida, Y.; Miura, D.; Watanabe, S.; Aoki, H.; Miyasaka, T.; Shinya, A. Mechanical Properties of Selective Laser Sintering Pure Titanium and Ti-6Al-4V, and Its Anisotropy. Materials 2020, 13, 5081. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.-I.; Jhong, Y.-T.; Tsai, M.-H. Effect of Gradient Energy Density on the Microstructure and Mechanical Properties of Ti6Al4V Fabricated by Selective Electron Beam Additive Manufacture. Materials 2020, 13, 1509. [Google Scholar] [CrossRef]
- Available online: https://www.iso.org/standard/75855.html (accessed on 20 August 2025).
- Uz, N.; İşisağ, Ö.; Perçin, S.; Aslantaş, K.; Kılıçlı, V. In vitro evaluation of bond strength between dental ceramics and titanium frameworks produced by additive and subtractive methods. BMC Oral Health 2025, 25, 757. [Google Scholar] [CrossRef] [PubMed]
- Vaska, K.R.; Nakka, C.; Reddy, K.M.; Chintalapudi, S.K. Comparative evaluation of shear bond strength between titanium-ceramic and cobalt-chromium-ceramic: An in vitro study. J. Indian Prosthodont. Soc. 2021, 21, 276–280. [Google Scholar] [CrossRef]
- Hey, J.; Beuer, F.; Bensel, T.; Boeckler, A.F. Single crowns with CAD/CAM-fabricated copings from titanium: 6-year clinical results. J. Prosthet. Dent. 2014, 112, 150–154. [Google Scholar] [CrossRef]
- Zhao, C.Q.; Wu, S.Q.; Lu, Y.J.; Gan, Y.L.; Guo, S.; Lin, J.J.; Huang, T.T.; Lin, J.X. Evaluation to the effect of B2O3-La2O3-SrO-Na2O-Al2O3 bonding agent on Ti6Al4V-porcelain bonding. J. Mech. Behav. Biomed. Mater. 2016, 63, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kelly, J.R.; Bailey, O.; Fischman, G. Porcelain-titanium bonding with a newly introduced, commercially available system. J. Prosthet. Dent. 2016, 116, 98–101. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, P. Effect of TiO2-SiO2-SnOx film with different firing temperatures on bond strength of low-fusing dental porcelain to pure titanium. Zhonghua Kou Qiang Yi Xue Za Zhi = Zhonghua Kouqiang Yixue Zazhi = Chin. J. Stomatol. 2015, 50, 433–437. [Google Scholar]
- Moldi, A.I.; Bhandari, K.S.; Nagral, S.; Deshpandey, S.; Kulkarni, P. Effect of sandblasting on fracture load of titanium ceramic crowns. J. Indian Prosthodont. Soc. 2015, 15, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Parchańska-Kowalik, M.; Wołowiec-Korecka, E.; Klimek, L. Effect of chemical surface treatment of titanium on its bond with dental ceramics. J. Prosthet. Dent. 2018, 120, 470–475. [Google Scholar] [CrossRef]
- Aslan, M.A.; Ural, C.; Arici, S. Investigation of the effect of titanium alloy surface coating with different techniques on titanium-porcelain bonding. J. Prosthet. Dent. 2016, 115, 115–122. [Google Scholar] [CrossRef]
- Yuan, M.J.; Zhang, S.J.; Liu, J.; Tan, F. Effects of different concentrations of MgSiF(6) as electrolyte for micro-arc oxidation on the bond strength between titanium and porcelain. Zhonghua Kou Qiang Yi Xue Za Zhi = Zhonghua Kouqiang Yixue Zazhi = Chin. J. Stomatol. 2018, 53, 111–115. [Google Scholar]
- Antanasova, M.; Kocjan, A.; Hočevar, M.; Jevnikar, P. Influence of surface airborne-particle abrasion and bonding agent application on porcelain bonding to titanium dental alloys fabricated by milling and by selective laser melting. J. Prosthet. Dent. 2020, 123, 491–499. [Google Scholar] [CrossRef]
- Vuorinen, V.; Kouhia, R.; Könönen, M.; Kivilahti, J.K. Bonding of ceramics to silver-coated titanium-A combined theoretical and experimental study. J. Biomed. Mater. Res. B Appl. Biomater. 2024, 112, e35407. [Google Scholar] [CrossRef]
- Hu, D.-D.; Ren, C.-X.; Luo, X.-P. Effect of surface treatment on the three-point bend bonding strength between pure titanium fabricated by selective laser melting and porcelain. Shanghai Kou Qiang Yi Xue 2023, 32, 230–235. [Google Scholar] [PubMed]
- Svanborg, P.; Le, H.H.; Sigurðardóttir, S.J.; Barkarmo, S. Shear bond strength of the ceramic veneer to additively manufactured titanium. Clin. Exp. Dent. Res. 2024, 10, e820. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, T.; Hamano, N.; Ino, S. Effects of silica-coating on surface topography and bond strength of porcelain fused to CAD/CAM pure titanium. Dent. Mater. J. 2016, 35, 325–332. [Google Scholar] [CrossRef]
- Kumasaka, T.; Ohno, A.; Hori, N.; Hoshi, N.; Maruo, K.; Kuwabara, A.; Seimiya, K.; Toyoda, M.; Kimoto, K. Influence of ultraviolet irradiation treatment on porcelain bond strength of titanium surfaces. Dent. Mater. J. 2018, 37, 422–428. [Google Scholar] [CrossRef]
- Yang, L.; Liang, X.; Liu, M. Influence of microstructure on metal-ceramic bonding in SLM-manufactured titanium alloy crowns and bridges. Biomed. Tech. 2025, 70, 269–276. [Google Scholar] [CrossRef]
- Curtis, J.G.; Dossett, J.; Prihoda, T.J.; Teixeira, E.C. Effect of Bonding Agent Application Method on Titanium-Ceramic Bond Strength. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2015, 24, 394–400. [Google Scholar] [CrossRef]
- Wang, J.-C.; Fu, P.-S.; Lai, P.-L.; Liu, C.-S.; Chen, W.-C.; Hung, C.-C. Effect of different firing atmospheres on debonding strength of dental porcelain fused to commercially pure titanium. Kaohsiung J. Med. Sci. 2020, 36, 212–219. [Google Scholar] [CrossRef]
- Antanasova, M.; Kocjan, A.; Kovač, J.; Žužek, B.; Jevnikar, P. Influence of thermo-mechanical cycling on porcelain bonding to cobalt-chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting. J. Prosthodont. Res. 2018, 62, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Yong, T.; Bo, G. Effects of thermal and mechanical cycling on the metal-ceramic bond strength of machine-milled Ti2448 alloy and pure titanium. Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi = West China J Stomatol. 2016, 34, 54–58. [Google Scholar]
- Yeşil, H.; Ezmek, B.; Sipahi, C.O. Effects of surface treatment methods on shear bond strength of ceramic to cast, milled and laser-sintered titanium frameworks. Gulhane Med. J. 2022, 64, 307–314. [Google Scholar] [CrossRef]
- Parushev, I.; Dikova, T.; Katreva, I.; Gagov, Y.; Simeonov, S. Adhesion of dental ceramic materials to titanium and titanium alloys: A review. Oxf. Open Mater. Sci. 2023, 3, itad011. [Google Scholar] [CrossRef]
- Gurel, K.; Toksavul, S.; Toman, M.; Tamac, E. In vitro marginal and internal adaptation of metal-ceramic crowns with cobalt-chrome and titanium framework fabricated with CAD/CAM and casting technique. Niger. J. Clin. Pract. 2019, 22, 812–816. [Google Scholar] [PubMed]
- Wu, J.-S.; Xing, H.-L.; Dong, C.-F.; Guo, T.-W.; Yang, S.-F. Research on physical and mechanical properties, crown accuracy by using self- made FUS-invest dental investment. Shanghai Kou Qiang Yi Xue 2017, 26, 139–145. [Google Scholar]
- Wu, J.; Wang, X.; Xing, H.; Guo, T.; Dong, C.; Yang, S. Evaluation of Mechanical Properties and Marginal Fit of Crowns Fabricated Using Commercially Pure Titanium and FUS-Invest. Biomed. Res. Int. 2017, 2017, 5807304. [Google Scholar] [CrossRef]
- Kayikci, O.; Ates, S.M. Comparison of marginal and internal fit of three-unit implant-supported fixed prosthetic substructures fabricated using CAD/CAM systems. Clin. Oral Investig. 2022, 26, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Ryniewicz, W.; Bojko, Ł.; Ryniewicz, A.M. The Impact of Sintering Technology and Milling Technology on Fitting Titanium Crowns to Abutment Teeth-In Vitro Studies. Materials 2022, 15, 5835. [Google Scholar] [CrossRef]
- Svanborg, P.; Eliasson, A.; Stenport, V. Additively Manufactured Titanium and Cobalt-Chromium Implant Frameworks: Fit and Effect of Ceramic Veneering. Int. J. Oral Maxillofac. Implants 2018, 33, 590–596. [Google Scholar] [CrossRef]
- Cuiling, L.; Liyuan, Y.; Xu, G.; Hong, S. Influence of coping material selection and porcelain firing on marginal and internal fit of computer-aided design/computer- aided manufacturing of zirconia and titanium ceramic implant-supported crowns. Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi = West China J Stomatol. 2016, 34, 262–266. [Google Scholar]
- Wadhwani, C.P.K.; Schoenbaum, T.; King, K.E.; Chung, K.-H. Techniques to Optimize Color Esthetics, Bonding, and Peri-implant Tissue Health With Titanium Implant Abutments. Compend. Contin. Educ. Dent. 2018, 39, 110–119. [Google Scholar]
- Moecke, S.E.; Diniz, A.L.; Borges, A.B.; Torres, C.R. Titanium abutment background masking using highly opaque cements for implant prosthetics. Am. J. Dent. 2023, 36, 222–226. [Google Scholar] [PubMed]
- Elter, B.; Tak, Ö. Influence of cement shade, ceramic thickness, and airborne-particle abrasion of titanium surface on the final color of monolithic lithium disilicate glass-ceramic hybrid-abutment systems in vitro. Quintessence Int. 2022, 53, 678–688. [Google Scholar] [CrossRef] [PubMed]
Type of Alloy | Microstructure | Advantages | Disadvantages | Indications of Use | Possible Production Techniques |
---|---|---|---|---|---|
Cp Ti grade 1 | α | High biocompatibility, excellent resistance to corrosion, ductile | Lowest strength | Dental implants, implant abutments, prosthetic restoration frameworks | Casting, milling, 3D printing |
Cp Ti grade 2 | α | Good biocompatibility, good corrosion resistance, | Moderate strength | Dental implants, implant abutments, prosthetic restoration frameworks | Casting, milling, 3D printing |
Cp Ti grade 3 | α | Higher strength than grade 2, high biocompatibility | Lower ductility than grade 2 | Dental implants, implant abutments, prosthetic restoration frameworks | Milling, casting, 3D printing |
Cp Ti grade 4 | α | Good strength, high biocompatibility | Lower ductility than grade 3 | Dental implants, implant abutments, prosthetic restoration frameworks | Milling, 3D printing, casting |
Ti6Al4V (grade 5) | α + β | High strength, good fatigue resistance | Presence of potentially toxic components (Al, V) | Dental implants, prosthetic frameworks | 3D printing, milling, casting |
Ti6Al4V ELI (grade 23) | α + β | High strength, good fatigue resistance | Presence of potentially toxic components (Al, V) | Dental implants, implant abutments, prosthetic frameworks | 3D printing, casting, milling |
Ti6Al7Nb | α + β | High strength, high biocompatibility | Presence of potentially toxic element (Al) | Dental implants, implant abutments, prosthetic frameworks | 3D printing |
Ti5Al2,5Fe (grade 9) | α + β | Good corrosion resistance, excellent biocompatibility, higher strength than cp Ti | Presence of potentially toxic element (Al) | Dental implants, implant abutments, prosthetic frameworks | 3D printing, milling |
Ti13Nb13Zr | β | Low elastic modulus, excellent biocompatibility | Complex processing | Dental implants | 3D printing |
Ti15Mo | β | High mechanical properties, good biocompatibility | Low wear resistance, surface treatment needed | Dental implants | 3D printing |
Authors | Type of Study | Method of Treatment/Specific Conditions | Type of Metal Alloy | Production Technique | Testing Method | Results | |
---|---|---|---|---|---|---|---|
1 | Zhao et al., 2016 [44]. | In vitro | Applying bonding agent B2O3– La2O3-SrO–Na2O–Al2O3 | Ti6Al4V | Selective laser melting (SLM) | Three point bending test | Increased metal–ceramic bond strength |
2 | Yang et al., 2016 [45]. | In vitro | Bonding agent | Cp Ti grade 4 | milling | Crack initiation stresses | Increased metal–ceramic bond strength |
3 | Zhang and Zhang 2015 [46]. | In vitro | TiO(2)-SiO(2)-SnOx nano-coatings | Cp Ti | milling | Three-point flexure bond test | Increased metal–ceramic bond strength |
4 | Moldi et al., 2015 [47]. | In vitro | Sandblasting with 250 μm Al2O3 particles | Cp Ti grade 2 | casting | Fracture load by universal testing machine | Increased metal–ceramic bond strength |
5 | Papia et al., 2018 [31]. | In vitro | Passivation/no passivation | CpTi grade 1 CpTi grade 2 Ti6Al4V | Casting Milling Electron beam melting (EBM) | Shear bond strength test using universal testing machine | Time of passivation does not affect bond strength Milled Ti showed lowest bond strength |
6 | Parchańska-Kowalik, Wołowiec-Korecka, and Klimek 2018 [48]. | In vitro | Removal of Al2O3 particles after sandblasting by etching | Cp Ti grade 1 | Casting | Shear bond strength | Decreased bond strength |
7 | Aslan, Ural, and Arici 2016 [49]. | In vitro | Microarc oxidation (MAO) with hydroxyapatite (HA) | Titan grade 5 | Milling | Bond strength by universal testing machine | Increased bond strength after coating with MAO and HA |
8 | Yuan et al., 2018 [50]. | In vitro | MAO | Cp Ti grade 4 | Milling | Three point bending test | Increased bond strength compared to only sandblasted titanium surface |
9 | Antanasova et al., 2020 [51]. | In vitro | Airborne particle abrasion (APA) and bonding agent | Ti6Al4V Ti6Al4V | Milling SLM | Three point bending test | Increased bond strength No difference between milled and slm-produced specimens |
10 | Vuorinen et al., 2024 [52]. | In vitro | Silver plating | Cp Ti grade 1 | Milling | Three point bending test | Increased bond strength |
11 | Hu, Ren, and Luo 2023 [53]. | In vitro | Sandblasting and gold plating | CpTi | SLM | Three point bending test | Increased bond strength |
12 | Svanborg et al., 2024 [54]. | In vitro | Grinding and APA | TiAl6V4 ELI (Ti grade 23) Cp Ti grade 4 | Additive manufacturing Milling | Shear bond strength test by universal testing machine | Grinding does not affect bond strength |
13 | Fukuyama, Hamano, and Ino 2016 [55]. | In vitro | Silica-coating (silica containing alumina powder, Rocatec Plus, 3MESPE) and bonding agent | Cp Ti | Milling | Shear bond strength test by universal testing machine | Improved bond strength |
14 | Kumasaka et al., 2018 [56]. | In vitro | Ultraviolet irradiation | Cp Ti gr 2 | Milling | Tensile bond test | Improved bond strength |
15 | Yang, Liang, and Liu 2025 [57]. | In vitro | Biomimetic surface design | Ti6Al4V (TC4) | Additive manufacturing | Bending tests in a universal testing machine | Surface structure design may affect titanium–ceramic bond strength |
16 | Curtis et al., 2015 [58]. | In vitro | Vita Titankeramik’s bonding agent in powder, paste, and spray | Cp Ti grade 2 | Milling | Three point bending test | Not affecting titanium–ceramic bond strength |
17 | Wang et al., 2020 [59]. | In vitro | Porcelain firing in vacuum, argon or helium | Cp Ti grade 2 | Milling | Three point bending test | Porcelain firing in argon atmosphere significantly improves bond strength |
18 | Antanasova et al., 2018 [60]. | In vitro | Thermomechanical cycling | Cp Ti Ti6Al4V Ti6Al4V | Casting Milling SLM | Shear bond strength | Decreases bond strength |
19 | Yong and Bo 2016 [61]. | In vitro | Thermomechanical cycling | Cp Ti Ti2448 | Milling | Crack initiation test was performed using a universal testing machine | Decreases bond strength |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomova, Z.; Tomov, D.; Vlahova, A.; Kirova, G.; Uzunova, Y. Porcelain Fused to Titanium—Advantages and Challenges. Dent. J. 2025, 13, 382. https://doi.org/10.3390/dj13090382
Tomova Z, Tomov D, Vlahova A, Kirova G, Uzunova Y. Porcelain Fused to Titanium—Advantages and Challenges. Dentistry Journal. 2025; 13(9):382. https://doi.org/10.3390/dj13090382
Chicago/Turabian StyleTomova, Zlatina, Desislav Tomov, Angelina Vlahova, Gergana Kirova, and Yordanka Uzunova. 2025. "Porcelain Fused to Titanium—Advantages and Challenges" Dentistry Journal 13, no. 9: 382. https://doi.org/10.3390/dj13090382
APA StyleTomova, Z., Tomov, D., Vlahova, A., Kirova, G., & Uzunova, Y. (2025). Porcelain Fused to Titanium—Advantages and Challenges. Dentistry Journal, 13(9), 382. https://doi.org/10.3390/dj13090382