Charting New Territory: AI Applications in Dental Caries Detection from Panoramic Imaging
Abstract
1. Introduction
2. Methods
2.1. Criteria Selection
2.2. Inclusion and Exclusion Criteria
2.3. Abstract Screening and Data Extraction
2.4. Data Synthesis
3. Results
4. Discussion
4.1. Clinical Implications
4.2. Strengths and Limitations
4.3. Future Directions
4.4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corrêa-Faria, P.; Silva, K.C.; Costa, L.R. Impact of dental caries on oral health-related quality of life in children with dental behavior management problems. Braz. Oral. Res. 2022, 36, e041. [Google Scholar] [CrossRef]
- Lipsky, M.S.; Singh, T.; Zakeri, G.; Hung, M. Oral Health and Older Adults: A Narrative Review. Dent. J. 2024, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Oral Health. Available online: https://www.who.int/news-room/fact-sheets/detail/oral-health (accessed on 27 July 2025).
- Ghodasra, R.; Brizuela, M. Dental Caries Diagnostic Testing. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Abdul Raheem, Y. Unveiling the Significance and Challenges of Integrating Prevention Levels in Healthcare Practice. J. Prim. Care Community Health 2023, 14, 21501319231186500. [Google Scholar] [CrossRef] [PubMed]
- Kweon, H.H.; Lee, J.H.; Youk, T.M.; Lee, B.A.; Kim, Y.T. Panoramic radiography can be an effective diagnostic tool adjunctive to oral examinations in the national health checkup program. J. Periodontal Implant. Sci. 2018, 48, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.-J.; Choi, B.-R.; Huh, K.-H.; Yi, W.-J.; Heo, M.-S.; Lee, S.-S.; Choi, S.-C. Usefullness of panoramic radiograph for the improvement of periodic oral examination. Imaging Sci. Dent. 2010, 40, 25–32. [Google Scholar]
- Sabarudin, A.; Tiau, Y.J. Image quality assessment in panoramic dental radiography: A comparative study between conventional and digital systems. Quant. Imaging Med. Surg. 2013, 3, 43–48. [Google Scholar] [CrossRef]
- Wenzel, A. Radiographic display of carious lesions and cavitation in approximal surfaces: Advantages and drawbacks of conventional and advanced modalities. Acta Odontol. Scand. 2014, 72, 251–264. [Google Scholar] [CrossRef]
- Abdinian, M.; Razavi, S.M.; Faghihian, R.; Samety, A.A.; Faghihian, E. Accuracy of Digital Bitewing Radiography versus Different Views of Digital Panoramic Radiography for Detection of Proximal Caries. J. Dent. 2015, 12, 290–297. [Google Scholar]
- Jacobs, R.; Fontenele, R.C.; Lahoud, P.; Shujaat, S.; Bornstein, M.M. Radiographic diagnosis of periodontal diseases—Current evidence versus innovations. Periodontol 2000 2024, 95, 51–69. [Google Scholar] [CrossRef]
- Wang, Y.-C.C.; Chen, T.-L.; Vinayahalingam, S.; Wu, T.-H.; Chang, C.W.; Chang, H.H.; Wei, H.-J.; Chen, M.-H.; Ko, C.-C.; Moin, D.A. Artificial Intelligence to Assess Dental Findings from Panoramic Radiographs--A Multinational Study. arXiv 2025, arXiv:2502.10277. [Google Scholar]
- Dashti, M.; Londono, J.; Ghasemi, S.; Zare, N.; Samman, M.; Ashi, H.; Amirzade-Iranaq, M.H.; Khosraviani, F.; Sabeti, M.; Khurshid, Z. Comparative analysis of deep learning algorithms for dental caries detection and prediction from radiographic images: A comprehensive umbrella review. PeerJ Comput. Sci. 2024, 10, e2371. [Google Scholar] [CrossRef] [PubMed]
- Anil, S.; Porwal, P.; Porwal, A. Transforming Dental Caries Diagnosis Through Artificial Intelligence-Based Techniques. Cureus 2023, 15, e41694. [Google Scholar] [CrossRef] [PubMed]
- Kühnisch, J.; Meyer, O.; Hesenius, M.; Hickel, R.; Gruhn, V. Caries Detection on Intraoral Images Using Artificial Intelligence. J. Dent. Res. 2022, 101, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Albano, D.; Galiano, V.; Basile, M.; Di Luca, F.; Gitto, S.; Messina, C.; Cagetti, M.G.; Del Fabbro, M.; Tartaglia, G.M.; Sconfienza, L.M. Artificial intelligence for radiographic imaging detection of caries lesions: A systematic review. BMC Oral Health 2024, 24, 274. [Google Scholar] [CrossRef]
- Futyma-Gąbka, K.; Różyło-Kalinowska, I. The use of artificial intelligence in radiological diagnosis and detection of dental caries: A systematic review. J. Stomatol. 2021, 74, 262–266. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Asci, E.; Kilic, M.; Celik, O.; Cantekin, K.; Bircan, H.B.; Bayrakdar, İ.S.; Orhan, K. A Deep Learning Approach to Automatic Tooth Caries Segmentation in Panoramic Radiographs of Children in Primary Dentition, Mixed Dentition, and Permanent Dentition. Children 2024, 11, 690. [Google Scholar] [CrossRef]
- Başaran, M.; Çelik, Ö.; Bayrakdar, I.S.; Bilgir, E.; Orhan, K.; Odabaş, A.; Aslan, A.F.; Jagtap, R. Diagnostic charting of panoramic radiography using deep-learning artificial intelligence system. Oral Radiol. 2022, 38, 363–369. [Google Scholar] [CrossRef]
- Dayı, B.; Üzen, H.; Çiçek, İ.B.; Duman, Ş.B. A Novel Deep Learning-Based Approach for Segmentation of Different Type Caries Lesions on Panoramic Radiographs. Diagnostics 2023, 13, 202. [Google Scholar] [CrossRef]
- Mărginean, A.C.; Mureşanu, S.; Hedeşiu, M.; Dioşan, L. Teeth segmentation and carious lesions segmentation in panoramic X-ray images using CariSeg, a networks’ ensemble. Heliyon 2024, 10, e30836. [Google Scholar] [CrossRef]
- Zadrożny, Ł.; Regulski, P.; Brus-Sawczuk, K.; Czajkowska, M.; Parkanyi, L.; Ganz, S.; Mijiritsky, E. Artificial Intelligence Application in Assessment of Panoramic Radiographs. Diagnostics 2022, 12, 224. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, G.; Yin, Q.; Yang, J.; Sun, J.; Lv, S.; Shi, Q. Tooth Type Enhanced Transformer for Children Caries Diagnosis on Dental Panoramic Radiographs. Diagnostics 2023, 13, 689. [Google Scholar] [CrossRef]
- Chen, H.; Gomez, C.; Huang, C.M.; Unberath, M. Explainable medical imaging AI needs human-centered design: Guidelines and evidence from a systematic review. NPJ Digit. Med. 2022, 5, 156. [Google Scholar] [CrossRef]
- Schwendicke, F.; Samek, W.; Krois, J. Artificial Intelligence in Dentistry: Chances and Challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef]
- Ducret, M.; Wahal, E.; Gruson, D.; Amrani, S.; Richert, R.; Mouncif-Moungache, M.; Schwendicke, F. Trustworthy Artificial Intelligence in Dentistry: Learnings from the EU AI Act. J. Dent. Res. 2024, 103, 1051–1056. [Google Scholar] [CrossRef]
- Yu, A.C.; Mohajer, B.; Eng, J. External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review. Radiol. Artif. Intell. 2022, 4, e210064. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanifarajzadeh, M.; Mahrous, A.M.; Shazib, M.A.; Riggs, S.; Dogan, J.; Dolan, T.A. Preparing the Next Generation of Clinicians for Practice Using Augmented and Artificial Intelligence. Compend. Contin. Educ. Dent. 2022, 43, e1–e4. [Google Scholar] [PubMed]
- Pul, U.; Schwendicke, F. Artificial intelligence for detecting periapical radiolucencies: A systematic review and meta-analysis. J. Dent. 2024, 147, 105104. [Google Scholar] [CrossRef] [PubMed]
Database Date | Search Strategy Filters | Results |
---|---|---|
PubMed 20 June 2024 | (“Artificial Intelligence”[Mesh] OR “Artificial intelligence” OR “AI” OR “Computer Reasoning” OR “Machine Intelligence” OR “Deep Learning”) AND (“Dental Caries”[Mesh] OR “Dental Caries/diagnostic imaging”[Mesh] OR “Dental Caries” OR “Dental Decay” OR “Dental Cavities” OR “Carious Lesion” OR “Carious Lesions” OR “Dental Cavity”) AND (“Radiography, Panoramic”[Mesh] OR “Panoramic radiograph” OR “Panoramic Radiography” OR “Panoramic Radiographies” OR “Orthopantomography” OR “Orthopantomographies” OR “Pantomography” OR “Pantomographies”) Filter: English | 17 |
Scopus 20 June 2024 | TITLE-ABS-KEY ((“Artificial intelligence” OR “AI” OR “Computer Reasoning” OR “Machine Intelligence” OR “Deep Learning”) AND (“Dental Caries” OR “Dental Decay” OR “Dental Cavities” OR “Carious Lesion” OR “Carious Lesions” OR “Dental Cavity”) AND (“Panoramic radiograph” OR “Panoramic Radiography” OR “Panoramic Radiographies” OR “Orthopantomography” OR “Orthopantomographies” OR “Pantomography” OR “Pantomographies”)) Filter: English | 33 |
Web of Science 20 June 2024 | TS = ((“Artificial intelligence” OR “AI” OR “Computer Reasoning” OR “Machine Intelligence” OR “Deep Learning”) AND (“Dental Caries” OR “Dental Decay” OR “Dental Cavities” OR “Carious Lesion” OR “Carious Lesions” OR “Dental Cavity”) AND (“Panoramic radiograph” OR “Panoramic Radiography” OR “Panoramic Radiographies” OR “Orthopantomography” OR “Orthopantomographies” OR “Pantomography” OR “Pantomographies”)) Filter: English | 8 |
Dentistry & Oral Sciences Source 20 June 2024 | (“Artificial intelligence” OR “AI” OR “Computer Reasoning” OR “Machine Intelligence” OR “Deep Learning”) AND (“Dental Caries” OR “Dental Decay” OR “Dental Cavities” OR “Carious Lesion” OR “Carious Lesions” OR “Dental Cavity”) AND (“Panoramic radiograph” OR “Panoramic Radiography” OR “Panoramic Radiographies” OR “Orthopantomography” OR “Orthopantomographies” OR “Pantomography” OR “Pantomographies”) Filter: English | 6 |
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Author Names | AI Program | Setting | Study Population | Advantages | Disadvantages |
---|---|---|---|---|---|
Asci, E. et al., 2024 [19] | Deep Learning Model (DLM) | Ataturk University, Turkey | Evaluated 6075 X-rays of children 4 to 14 |
|
|
Başaran M., et al., 2021 [20] | CranioCatch | Eskişehi, Turkey, | Evaluated 1084 radiographs |
|
|
Dayı B., et al., 2023 [21] | DCD-Net (Dental Caries Detection Network) | Inonu University, Turkey | Evaluated 504 X-rays of individuals aged 14 to 80 |
|
|
Mărginean A.C., et al., 2024 [22] | CariSeg | Tufts U. (USA), Noor Center (Qom, Iran), Iuliu Haţieganu U. (Cluj-Napoca, Romania) | 1116 |
|
|
Y.C.C. Wang, et al., 2021 [12] | Diagnocat | Radboud University Medical Center (Radboudumc), Nijmegen Federal University of Minas Gerais (UFMG) National Taiwan University Hospital (NTUH) | 6659 |
|
|
Zadrożny, Ł. et al., 2022 [23] | Diagnocat | Medical University of Warsaw, Department of Dental & Maxillofacial Radiology | Ninety X-rays evaluated, 16 Male, 14 Female |
|
|
Zhou X., et al., 2022 [24] | Tooth Type Enhanced Transformer (TTET) | Beijing Children’s Hospital, Beijing Stomatological Hospital, CAS, and Tsinghua University | 6028 |
|
|
Author Names | AI Program | Specificity | Accuracy | F1 Score | Number of Radiographs |
---|---|---|---|---|---|
Asci, E. et al., 2024 [19] | Deep Learning Model (DLM) | 0.95 | 0.98 | 0.92 | 2785 |
Dayi B., et al., 2023 [21] | Dental Caries Detection Network (DCDNet) | 0.48 | 0.56 | 0.61 | 504 |
Başaran M., et al., 2021 [20] | Craniocatch | 0.30 | 0.51 | 0.38 | 1084 |
Mărginean A.C., et al., 2024 [22] | CariSeg | 0.51 | 0.81 | 0.650 | 150 |
Y.C.C. Wang, et al., 2021 [12], Zadrożny, Ł. et al., 2022 [23] | Diagnocat | 0.86, 0.98 Mean = 0.92 SD = 0.08 | 0.88, 0.85 Mean = 0.87 SD = 0.02 | 0.86, 0.59 Mean = 0.73 SD = 0.19 | 400, 30 |
Zhou X., et al., 2023 [24] | Tooth Type Enhanced Transformer (TTET) | 0.83 | 0.880 | 0.87 | 210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, M.; Yevseyevich, D.; Khazana, M.; Schwartz, C.; Lipsky, M.S. Charting New Territory: AI Applications in Dental Caries Detection from Panoramic Imaging. Dent. J. 2025, 13, 366. https://doi.org/10.3390/dj13080366
Hung M, Yevseyevich D, Khazana M, Schwartz C, Lipsky MS. Charting New Territory: AI Applications in Dental Caries Detection from Panoramic Imaging. Dentistry Journal. 2025; 13(8):366. https://doi.org/10.3390/dj13080366
Chicago/Turabian StyleHung, Man, Daniel Yevseyevich, Milan Khazana, Connor Schwartz, and Martin S. Lipsky. 2025. "Charting New Territory: AI Applications in Dental Caries Detection from Panoramic Imaging" Dentistry Journal 13, no. 8: 366. https://doi.org/10.3390/dj13080366
APA StyleHung, M., Yevseyevich, D., Khazana, M., Schwartz, C., & Lipsky, M. S. (2025). Charting New Territory: AI Applications in Dental Caries Detection from Panoramic Imaging. Dentistry Journal, 13(8), 366. https://doi.org/10.3390/dj13080366