The Areca Nut and Oral Submucosal Fibrosis: A Narrative Review
Abstract
1. Introduction
2. Epidemiology of OSF
3. Cultural Roots and Public Blind Spots
4. Clinical and Histopathological Parameters for Diagnosing OSF
4.1. Clinical Parameters
4.2. Histopathological Parameters
4.3. Insights into the Molecular Basis of OSF: Myofibroblasts Differentiation and Malignant Transformation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AN | Areca nut |
OSF | Oral submucosal fibrosis |
SMA | Smooth muscle actin |
TGF | Transforming growth factor |
YAP | Yes-associated protein |
References
- Duggirala, T.L.; Marthala, M.; Gannepalli, A.; Podduturi, S.R. Oral submucous fibrosis in children: Report of three cases and review. J. Indian Acad. Oral Med. Radiol. 2015, 27, 105–111. [Google Scholar] [CrossRef]
- Almuzaien, M.; Awais, D.; Alrasheed, M.; Awad, M.; Srivastava, K.C.; Gogineni, S.B.; Shetty, R.M.; Shetty, S.R. Awareness of oral submucous fibrosis among the quid-chewing South-Asian expatriates in the United Arab Emirates. J. Pharm. Bioallied Sci. 2024, 16, S1461–S1464. [Google Scholar] [CrossRef]
- Gupta, B.; Johnson, N.W. Systematic review and meta-analysis of association of smokeless tobacco and of betel quid without tobacco with incidence of oral cancer in South Asia and the Pacific. PLoS ONE 2014, 9, e113385. [Google Scholar] [CrossRef]
- Pankaj, C. Areca nut or betel nut control is mandatory if India wants to reduce the burden of cancer especially cancer of the oral cavity. Int. J. Head Neck Surg. 2011, 1, 17–20. [Google Scholar] [CrossRef]
- Angadi, P.V.; Rao, S. Management of oral submucous fibrosis: An overview. Oral Maxillofac. Surg. 2010, 14, 133–142. [Google Scholar] [CrossRef]
- Warnakulasuriya, S. Areca nut use following migration and its consequences. Addict. Biol. 2002, 7, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Warnakulasuriya, S. Global epidemiology of areca nut usage. Addict. Biol. 2002, 7, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Min-Shan Ko, A.; Warnakulasuriya, S.; Ling, T.-Y.; Sunarjo; Rajapakse, P.S.; Zain, R.B.; Ibrahim, S.O.; Zhang, S.-S.; Wu, H.-J. Population burden of betel quid abuse and its relation to oral premalignant disorders in South, Southeast, and East Asia: An Asian Betel-quid Consortium Study. Am. J. Public Health 2012, 102, e17–e24. [Google Scholar] [CrossRef]
- Tilakaratne, W.M.; Klinikowski, M.F.; Saku, T.; Peters, T.J.; Warnakulasuriya, S. Oral submucous fibrosis: Review on aetiology and pathogenesis. Oral Oncol. 2006, 42, 561–568. [Google Scholar] [CrossRef]
- Pindborg, J.J.; Sirsat, S.M. Oral submucous fibrosis. Oral Surg. Oral Med. Oral Pathol. 1966, 22, 764–779. [Google Scholar] [CrossRef]
- Hazarey, V.; Erlewad, D.; Mundhe, K.; Ughade, S. Oral submucous fibrosis: Study of 1000 cases from central India. J. Oral Pathol. Med. 2007, 36, 12–17. [Google Scholar] [CrossRef]
- Shah, N.; Sharma, P. Role of chewing and smoking habits in the etiology of oral submucous fibrosis (OSF): A case-control study. J. Oral Pathol. Med. 1998, 27, 475–479. [Google Scholar] [CrossRef]
- Chatterjee, N.; Gupte, H.A.; Mandal, G. A Qualitative Study of Perceptions and Practices Related to Areca Nut Use Among Adolescents in Mumbai, India. Nicotine Tob. Res. 2021, 23, 1793–1800. [Google Scholar] [CrossRef]
- Humans IWGotEoCRt. Betel-Quid and Areca-Nut Chewing and Some Areca-Nut Derived Nitrosamines; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2004; Volume 85. [Google Scholar]
- Passi, D.; Bhanot, P.; Kacker, D.; Chahal, D.; Atri, M.; Panwar, Y. Oral submucous fibrosis: Newer proposed classification with critical updates in pathogenesis and management strategies. Natl. J. Maxillofac. Surg. 2017, 8, 89–94. [Google Scholar] [CrossRef]
- More, C.B.; Gupta, S.; Joshi, J.; Varma, S.N. Classification system for oral submucous fibrosis. J. Indian Acad. Oral Med. Radiol. 2012, 24, 24. [Google Scholar] [CrossRef]
- More, C.B.; Das, S.; Patel, H.; Adalja, C.; Kamatchi, V.; Venkatesh, R. Proposed clinical classification for oral submucous fibrosis. Oral Oncol. 2012, 48, 200–202. [Google Scholar] [CrossRef]
- Mohapatra, D.; Panda, S.; Mohanty, N.; Panda, S.; Lewkowicz, N.; Lapinska, B. Comparison of Immunohistochemical Markers in Oral Submucous Fibrosis and Oral Submucous Fibrosis Transformed to Oral Squamous Cell Carcinoma—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 11771. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Tail, Y.-H.; Wang, W.-C.; Chen, C.-Y.; Kao, Y.-H.; Chen, Y.-K.; Chen, C.-H. Malignant transformation in 5071 southern Taiwanese patients with potentially malignant oral mucosal disorders. BMC Oral Health 2014, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.R.; Villa, A.; More, C.B.; Jayasinghe, R.D.; Kerr, A.R.; Johnson, N.W. Oral submucous fibrosis: A contemporary narrative review with a proposed inter-professional approach for an early diagnosis and clinical management. J. Otolaryngol.-Head Neck Surg. 2020, 49, 3. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, R.W. Betel nut chewer’s cancer. USA Armed Forces Med. J. 1951, 2, 1371–1375. [Google Scholar]
- Gerry, R.G.; Smith, S.T.; Calton, M.L. The oral characteristics of guamanians including the effects of betel chewing on the oral tissues. Oral Surg. Oral Med. Oral Pathol. 1952, 5, 762–781. [Google Scholar] [CrossRef]
- Mehta, F.S.; Sanjana, M.K.; Barretto, M.A. Relation of betel leaf chewing to periodontal disease. J. Am. Dent. Assoc. 1955, 50, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Naik, A.; Chitturi, P.; Nguyen, J.; Leask, A. The yes-associated protein-1 (YAP1) inhibitor celastrol suppresses the ability of transforming growth factor β to activate human gingival fibroblasts. Arch. Oral Biol. 2024, 160, 105910. [Google Scholar] [CrossRef]
- Iocca, O.; Sollecito, T.P.; Alawi, F.; Weinstein, G.S.; Newman, J.G.; De Virgilio, A.; Di Maio, P.; Spriano, G.; Pardiñas López, S.; Shanti, R.M. Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head Neck 2020, 42, 539–555. [Google Scholar] [CrossRef]
- Murthy, V.; Mylonas, P.; Carey, B.; Yogarajah, S.; Farnell, D.; Addison, O.; Cook, R.; Escudier, M.; Diniz-Freitas, M.; Limeres, J.; et al. Malignant Transformation Rate of Oral Submucous Fibrosis: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 1793. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.-W.; Shih, Y.-H.; Fuh, L.-J.; Shieh, T.-M. Oral Submucous Fibrosis: A Review on Biomarkers, Pathogenic Mechanisms, and Treatments. Int. J. Mol. Sci. 2020, 21, 7231. [Google Scholar] [CrossRef] [PubMed]
- Pakshir, P.; Noskovicova, N.; Lodyga, M.; Son, D.O.; Schuster, R.; Goodwin, A.; Karvonen, H.; Hinz, B. The myofibroblast at a glance. J. Cell Sci. 2020, 133, jcs227900. [Google Scholar] [CrossRef] [PubMed]
- Damasceno, L.S.; Gonçalves Fda, S.; Costa e Silva, E.; Zenóbio, E.G.; Souza, P.E.; Horta, M.C. Stromal myofibroblasts in focal reactive overgrowths of the gingiva. Braz. Oral Res. 2012, 26, 373–377. [Google Scholar] [CrossRef]
- Nikoloudaki, G.; Creber, K.; Hamilton, D.W. Wound healing and fibrosis: A contrasting role for periostin in skin and the oral mucosa. Am. J. Physiol.-Cell Physiol. 2020, 318, C1065–C1077. [Google Scholar] [CrossRef]
- Sakamoto, R.; Nitta, T.; Kamikawa, Y.; Kono, S.; Kamikawa, Y.; Sugihara, K.; Tsuyama, S.; Murata, F. Histochemical, immunohistochemical, and ultrastructural studies of gingival fibromatosis: A case report. Med. Electron Microsc. 2002, 35, 248–254. [Google Scholar] [CrossRef]
- Guo, F.; Carter, D.E.; Leask, A. Mechanical tension increases CCN2/CTGF expression and proliferation in gingival fibroblasts via a TGFβ-dependent mechanism. PLoS ONE 2011, 6, e19756. [Google Scholar] [CrossRef]
- Kiuchi, M.; Yamamura, T.; Okudera, M.; Souksavanh, V.; Ishigami, T.; Iwase, T.; Warnakulasuriya, S.; Komiyama, K. An assessment of mast cells and myofibroblasts in denture-induced fibrous hyperplasia. J. Oral Pathol. Med. 2014, 43, 53–60. [Google Scholar] [CrossRef]
- Angadi, P.V.; Kale, A.D.; Hallikerimath, S. Evaluation of myofibroblasts in oral submucous fibrosis: Correlation with disease severity. J. Oral Pathol. Med. 2011, 40, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Pereira de Oliveira, D.H.I.; da Silveira, É.J.D.; de Souza, L.B.; Caro-Sanchez, C.H.S.; Dominguez-Malagon, H.; Mosqueda Taylor, A.; Queiroz, L.M.G. Myofibroblastic lesions in the oral cavity: Immunohistochemical and ultrastructural analysis. Oral Dis. 2019, 25, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Kumar, N.; Pant, I.; Narra, S.; Kondaiah, P. Activation of TGF-β pathway by areca nut constituents: A possible cause of oral submucous fibrosis. PLoS ONE 2012, 7, e51806. [Google Scholar] [CrossRef]
- Moutasim, K.A.; Jenei, V.; Sapienza, K.; Marsh, D.; Weinreb, P.H.; Violette, S.M.; Lewis, M.P.; Marshall, J.F.; Fortune, F.; Tilakaratne, W.M.; et al. Betel-derived alkaloid up-regulates keratinocyte alphavbeta6 integrin expression and promotes oral submucous fibrosis. J. Pathol. 2011, 223, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Tsai, C.H.; Lai, Y.L.; Yu, C.C.; Chi, W.Y.; Li, J.J.; Chang, W.W. Arecoline-induced myofibroblast transdifferentiation from human buccal mucosal fibroblasts is mediated by ZEB1. J. Cell. Mol. Med. 2014, 18, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Yang, L.C.; Hu, F.W.; Peng, C.Y.; Yu, C.H.; Yu, C.C. Elevation of Twist expression by arecoline contributes to the pathogenesis of oral submucous fibrosis. J. Formos. Med. Assoc. 2016, 115, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Baulida, J. Epithelial-to-mesenchymal transition transcription factors in cancer-associated fibroblasts. Mol. Oncol. 2017, 11, 847–859. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.; Mei, J.; Li, Z.; Huang, Y.; Sun, H.; Zheng, K.; Kuang, H.; Luo, W. Knockdown of Notch Suppresses Epithelial-mesenchymal Transition and Induces Angiogenesis in Oral Submucous Fibrosis by Regulating TGF-β1. Biochem. Genet. 2024, 62, 1055–1069. [Google Scholar] [CrossRef]
- Shetty, S.S.; Sharma, M.; Padam, K.S.R.; Kudva, A.; Patel, P.; Radhakrishnan, R. The interplay of EMT and stemness driving malignant transformation of Oral Submucous Fibrosis. J. Oral Biol. Craniofac. Res. 2024, 14, 63–71. [Google Scholar] [CrossRef]
- Xu, H.Q.; Guo, Z.X.; Yan, J.F.; Wang, S.Y.; Gao, J.L.; Han, X.X.; Qin, W.P.; Lu, W.C.; Gao, C.H.; Zhu, W.W.; et al. Fibrotic Matrix Induces Mesenchymal Transformation of Epithelial Cells in Oral Submucous Fibrosis. Am. J. Pathol. 2023, 193, 1208–1222. [Google Scholar] [CrossRef]
- Younesi, F.S.; Miller, A.E.; Barker, T.H.; Rossi, F.M.V.; Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 617–638. [Google Scholar] [CrossRef] [PubMed]
- Leask, A.; Naik, A.; Stratton, R.J. Back to the future: Targeting the extracellular matrix to treat systemic sclerosis. Nat. Rev. Rheumatol. 2023, 19, 713–723. [Google Scholar] [CrossRef]
- Su, J.Y.; Yu, C.C.; Peng, C.Y.; Liao, Y.W.; Hsieh, P.L.; Yang, L.C.; Yu, C.H.; Chou, M.Y. Silencing periostin inhibits myofibroblast transdifferentiation of fibrotic buccal mucosal fibroblasts. J. Formos. Med. Assoc. 2021, 120, 2010–2015. [Google Scholar] [CrossRef]
- Sundar, S.; Ramani, P.; Sherlin, H.J.; Jayaraj, G. Expression of “Periostin” in Leukoplakia and Oral Submucous Fibrosis: An Immunohistochemical Study. J. Int. Oral Health 2021, 13, 267–273. [Google Scholar]
- Monteiro, R.; Hallikeri, K.; Sudhakaran, A. PTEN and α-SMA Expression and Diagnostic Role in Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma with Concomitant Oral Submucous Fibrosis. J. Oral Maxillofac. Res. 2021, 12, e3. [Google Scholar] [CrossRef] [PubMed]
- Parapuram, S.K.; Shi-wen, X.; Elliott, C.; Welch, I.D.; Jones, H.; Baron, M.; Denton, C.P.; Abraham, D.J.; Leask, A. Loss of PTEN Expression by Dermal Fibroblasts Causes Skin Fibrosis. J. Investig. Dermatol. 2011, 131, 1996–2003. [Google Scholar] [CrossRef] [PubMed]
- Leask, A. Conjunction junction, what’s the function? CCN proteins as targets in fibrosis and cancers. Am. J. Physiol. Cell Physiol. 2020, 318, C1046–C1054. [Google Scholar] [CrossRef]
- Parapuram, S.K.; Thompson, K.; Tsang, M.; Hutchenreuther, J.; Bekking, C.; Liu, S.; Leask, A. Loss of PTEN expression by mouse fibroblasts results in lung fibrosis through a CCN2-dependent mechanism. Matrix Biol. 2015, 43, 35–41. [Google Scholar] [CrossRef]
- Liu, S.; Parapuram, S.K.; Leask, A. Brief Report: Fibrosis Caused by Loss of PTEN Expression in Mouse Fibroblasts Is Crucially Dependent on CCN2. Arthritis Rheum. 2013, 65, 2940–2944. [Google Scholar] [CrossRef]
- Deng, Y.-T.; Chen, H.-M.; Cheng, S.-J.; Chiang, C.-P.; Kuo, M.Y.-P. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by curcumin. Oral Oncol. 2009, 45, e99–e105. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Wu, K.J.; Chen, H.M.; Deng, Y.T. Arecoline activates latent transforming growth factor β1 via mitochondrial reactive oxygen species in buccal fibroblasts: Suppression by epigallocatechin-3-gallate. J. Formos. Med. Assoc. 2018, 117, 527–534. [Google Scholar] [CrossRef]
- Zeng, Y.; Luo, M.; Yao, Z.; Xiao, X. Adiponectin inhibits ROS/NLRP3 inflammatory pathway through FOXO3A to ameliorate oral submucosal fibrosis. Odontology 2024, 112, 811–825. [Google Scholar] [CrossRef]
- Shah, A.M.; Jain, K.; Desai, R.S.; Bansal, S.; Shirsat, P.; Prasad, P.; Bodhankar, K. The Role of Increased Connective Tissue Growth Factor in the Pathogenesis of Oral Submucous Fibrosis and its Malignant Transformation-An Immunohistochemical Study. Head Neck Pathol. 2021, 15, 817–830. [Google Scholar] [CrossRef]
- Yao, M.; Li, J.; Yuan, S.; Zhu, X.; Hu, Z.; Li, Q.; Cao, R.; Wang, W.; Fang, C. Role of the arecoline/YAP1/BMP4 pathway in promoting endothelial-mesenchymal transition in oral submucous fibrosis. J. Oral Pathol. Med. 2020, 49, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Katarkar, A.; Dhariwal, R.; Mohanty, S.; Mahato, B.; Ray, J.G.; Chaudhuri, K. Effect of lysyl oxidase G473A polymorphism on lysyl oxidase and total soluble collagen expression in oral submucous fibrosis. Asian Pac. J. Cancer Prev. APJCP 2021, 22, 2493. [Google Scholar] [CrossRef] [PubMed]
- Warnakulasuriya, S.; Johnson, N.W.; Van der Waal, I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J. Oral Pathol. Med. 2007, 36, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Cox, S.C.; Murray Walker, D. Establishing a normal range for mouth opening: Its use in screening for oral submucous fibrosis. Br. J. Oral Maxillofac. Surg. 1997, 35, 40–42. [Google Scholar] [CrossRef] [PubMed]
Pathways/Molecular Mediators | Role in Pathogenesis | Available Supporting Evidence | References | |||
---|---|---|---|---|---|---|
in vitro | in vivo | IHC on Patient Sampels | Gene Expression Profiling | |||
TGF-β1/Smad2 signaling | Major activator of myofibroblast differentiation | ü | ü | ü | [36,37,54] | |
TGF-β1/Smad3 signaling | ü | ü | [55] | |||
TGF-β1/Smad4 signaling | ü | [37] | ||||
Integrin αvβ6 | Activation of TGF-β/Smad pathway and myofibroblast differentiation | ü | ü | [37] | ||
α-SMA | Highly expressed by myofibroblasts, which drive pathological ECM remodeling, excessive collagen production, and tissue contraction | ü | ü | ü | ü | [34,37,38,48,55] |
CCN2 | Pro-fibrotic matricellular protein that promotes ECM production and cooperates with TGF-β signaling to sustain fibrotic responses | ü | ü | ü | ü | [53,54,55,56] |
COL1A1 | Drives the production of type I collagen, leading to excessive ECM deposition, a hallmark of fibrosis | ü | ü | ü | ü | [47,55,58] |
YAP1/BMP4 signaling | Promoting EMT, and YAP is mechanosensitive transcription cofactor that promotes pro-fibrotic gene expression like CCN2 | ü | [57] | |||
PTEN | Less PTEN expression has been correlated with higher a-SMA expression at tissue staining level | ü | [48] | |||
Periostin | Pro-fibrotic matricellular protein and cell adhesion molecule, promoting collagen fibrillogenesis and tissue stiffness | ü | ü | ü | [46,47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazemi, K.; Fadl, A.; Sperandio, F.F.; Leask, A. The Areca Nut and Oral Submucosal Fibrosis: A Narrative Review. Dent. J. 2025, 13, 364. https://doi.org/10.3390/dj13080364
Kazemi K, Fadl A, Sperandio FF, Leask A. The Areca Nut and Oral Submucosal Fibrosis: A Narrative Review. Dentistry Journal. 2025; 13(8):364. https://doi.org/10.3390/dj13080364
Chicago/Turabian StyleKazemi, Kimia, Asmaa Fadl, Felipe F. Sperandio, and Andrew Leask. 2025. "The Areca Nut and Oral Submucosal Fibrosis: A Narrative Review" Dentistry Journal 13, no. 8: 364. https://doi.org/10.3390/dj13080364
APA StyleKazemi, K., Fadl, A., Sperandio, F. F., & Leask, A. (2025). The Areca Nut and Oral Submucosal Fibrosis: A Narrative Review. Dentistry Journal, 13(8), 364. https://doi.org/10.3390/dj13080364