Development of a Microfluidic Paper-Based Analytical Device for Myeloperoxidase Detection in Periodontitis
Abstract
1. Introduction
2. Materials and Methods
- Age
- Number of teeth
- Probing pocket depth (PPD) in millimeters: evaluated using a periodontal probe. This is the distance from the gingival margin to the deepest area at which the probe can penetrate under light and constant force (25 N) until resistance is observed.
- Bleeding on probing (BOP). This is an index analyzed by recording bleeding sites after PPD examination.
- Clinical attachment level (CAL). This is the distance from the base of the periodontal pocket to a fixed point on the crown, such as the cemento-enamel junction (CEJ)
- Number of sites with a probing pocket depth between 4 and 6 mm
- Number of sites with a probing pocket depth greater than 7 mm.
- H (n = 15)—Patients with good periodontal health (absence of bleeding on probing—BOP < 10%; probing pocket depth <3 mm; absence of alveolar bone loss; absence of gingival edema or color change);
- PD (n = 15)—Patients diagnosed with periodontitis stage 3 grade B (loss of clinical attachment level >5 mm; maximum of 4 teeth lost due to periodontitis; probing pocket depth ≥6 mm; periodontal loss equivalent to plaque levels; less than 2 mm of bone loss/attachment in the last 5 years).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
μPAD | Microfluidic paper-based analytical device |
MPO | Myeloperoxidase |
H | Healthy |
PD | Periodontal disease |
DAB | Diaminodifenilsulfon |
TMB | Tetramethylbenzidine |
TNF-α | Tumor necrosis factor alpha |
IL | Interleukin |
MMP | Metalloproteinase |
NO | Nitric oxide |
DNA | Deoxyribonucleic acid |
PPD | Probing pocket depth |
BOP | Bleeding on probing |
CAL | Clinical attachment level |
POx | Peroxidase curve |
References
- Dhungana, G.; Srisai, D.; Sampath, C.; Soliman, J.; Kelly, R.M.; Saleh, H.Y.; Sedik, A.; Raynes, E.; Ferguson, A.; Alluri, L.S.C.; et al. Unveiling the Molecular Crosstalk Between Periodontal and Cardiovascular Diseases: A Systematic Review. Dent. J. 2025, 13, 98. [Google Scholar] [CrossRef] [PubMed]
- Bud, E.; Pop, S.-I.; Bud, A.; Steele, B.R.; Vlasa, A. Bony Defect Regeneration in Periodontitis: A Systematic Review of the Literature Regarding the Use of Enamel Matrix Derivative Proteins. Dent. J. 2025, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Maria, M.K.M.; Abdel Moniem, E.M.; Hanafy, A.K.; Farag, D.B.E.; Radwan, I.A.; Abbass, M.M.S.; El Moshy, S.; Rady, D.; Dörfer, C.E.; Fawzy El-Sayed, K.M. Age-Related Oral and Para-Oral Tissue Disorders: The Evolving Therapeutic and Diagnostic Potential of Exosomes. Dent. J. 2025, 13, 106. [Google Scholar] [CrossRef] [PubMed]
- Darby, I. Risk factors for periodontitis & peri-implantitis. Periodontol. 2000 2022, 90, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nature reviews. Immunology 2021, 21, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.C.A.d.; Silva, I.L.; Alencar, L.B.B.d.; Araújo, V.F.d.; Moura, A.B.R.; Palmeira, J.T.; Maia, L.S.; Lacerda, M.G.d.A.; Oliveira, A.A.d.; Sousa, J.N.L.d. Relação entre doenças sistêmicas e manifestações periodontais: Um enfoque em grupos de risco da COVID-19/Relationship between systemic diseases and periodontal manifestations: A focus on COVID-19 risk groups. Braz. J. Dev. 2020, 6, 89109–89124. [Google Scholar] [CrossRef]
- Moura, N.M.V.; da Costa, K.F.; de Freitas, D.S.; Tavares, M.S.; Messora, M.R.; Trevisan, G.L.; de Oliveira, F.R.; Taba, M. Potential Chair-side Test for Gingival Inflammation Screening of Patients with and Without Comorbidities. Open Access J. Dent. Oral Surg. 2023, 4, 1072. [Google Scholar] [CrossRef]
- Almhöjd, U.; Cevik-Aras, H.; Karlsson, N.; Chuncheng, J.; Almståhl, A. Stimulated saliva composition in patients with cancer of the head and neck region. BMC Oral Health 2021, 21, 509. [Google Scholar] [CrossRef] [PubMed]
- Srila, W.; Sripilai, K.; Binlateh, T.; Thammanichanon, P.; Tiskratok, W.; Noisa, P.; Jitprasertwong, P. Relationship Between the Salivary Microbiome and Oral Malodor Metabolites in Older Thai Individuals with Periodontitis and the Cytotoxic Effects of Malodor Compounds on Human Oral Squamous Carcinoma (HSC-4) Cells. Dent. J. 2025, 13, 36. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.; Vineetha, R.; Smriti, K.; Pentapati, K.C.; Gadicherla, S.; Sunitha, C. Efficacy of Rapid Salivary C-Reactive Protein Test to Assess Early Changes in Malignancy in the Oral Cavity and Its Utility in Screening for Oral Cancer. Dent. J. 2025, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, R.; Mutahar, M.; Bartlett, D.; Jafari, J.; Moazzez, R. Salivary Proteins in Human Acquired Enamel Pellicle (AEP) on Eroded and Uneroded Teeth in Patients with Gastro-Oesophageal Reflux Disease (GORD). Dent. J. 2024, 12, 235. [Google Scholar] [CrossRef] [PubMed]
- Moura, N.M.V.; Gonzalez, A.F.; Taba Junior, M. The importance of Dentistry in COVID-19 pandemic and the role of saliva as a diagnostic tool. RGO Rev. Gaúch. Odontol. 2021, 69, e2021016. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Z. Saliva biomarkers in oral disease. Clin. Chim. Acta Int. J. Clin. Chem. 2023, 548, 117503. [Google Scholar] [CrossRef] [PubMed]
- Isola, G. Advances in Biomarkers and Diagnostics in Periodontitis and Oral Diseases. Int. J. Environ. Res. Public Health 2021, 18, 1886. [Google Scholar] [CrossRef] [PubMed]
- Souza, P.G.; Machado, A.C.; Pereira, A.G.; Teixeira, R.R.; Espíndola, F.S.; Soares, P.V. The dentin chemical degradation and saliva roles on Noncarious Cervical Lesions—Literature review. Rev. Odonto. Cienc. 2017, 32, 199–203. [Google Scholar] [CrossRef]
- Aji, N.R.A.S.; Räisänen, I.T.; Rathnayake, N.; Lundy, F.T.; Mc Crudden, M.T.C.; Goyal, L.; Sorsa, T.; Gupta, S. aMMP-8 POCT vs. Other Potential Biomarkers in Chair-Side Diagnostics and Treatment Monitoring of Severe Periodontitis. Int. J. Mol. Sci. 2024, 25, 9421. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, C.A.; Ali, K.M.; Sha, A.M.; Gul, S.S. Effect of Curcumin gel on inflammatory and anti-inflammatory biomarkers in experimental induced periodontitis in rats: A biochemical and immunological study. Front. Microbiol. 2023, 14, 1274189. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Pouso, A.I.; Pérez-Sayáns, M.; Bravo, S.B.; López-Jornet, P.; García-Vence, M.; Alonso-Sampedro, M.; Carballo, J.; García-García, A. Protein-Based Salivary Profiles as Novel Biomarkers for Oral Diseases. Dis. Markers 2018, 7, 6141845. [Google Scholar] [CrossRef] [PubMed]
- Taba, M., Jr.; Kinney, J.; Kim, A.S.; Giannobile, W.V. Diagnostic biomarkers for oral and periodontal diseases. Dent. Clin. N. Am. 2005, 49, 551–571. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.T.; Joseph, B.; Varghese, S.; Thomas, N.G.; Kamalasanan Vijayakumary, B.; Sorsa, T.; Anil, S.; Waltimo, T. Association between metabolic syndrome and salivary MMP-8, myeloperoxidase in periodontitis. Oral Dis. 2025, 31, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, J.S.; Sumagin, R. Non-Canonical Functions of Myeloperoxidase in Immune Regulation, Tissue Inflammation and Cancer. Int. J. Mol. Sci. 2022, 23, 12250. [Google Scholar] [CrossRef] [PubMed]
- Siraki, A.G. The many roles of myeloperoxidase: From inflammation and immunity to biomarkers, drug metabolism and drug discovery. Redox Biol. 2021, 46, 102109. [Google Scholar] [CrossRef] [PubMed]
- Memarzadeh Zahedani, M.; Schwahn, C.; Baguhl, R.; Kocher, T.; Below, H.; Welk, A. Association of salivary peroxidase activity and concentration with periodontal health: A validity study. J. Clin. Periodontol. 2017, 44, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Agner, K. Verdoperoxidase: A ferment isolated from leucocytes. Acta Physiol. Scand. Suppl. 1941, A21-62, 2. [Google Scholar] [CrossRef]
- Valdivieso, M.C.; Ortiz, L.; Castillo, J.J. Myeloperoxidase as a biomarker in periodontal disease: Electrochemical detection using printed screen graphene electrodes. Odontology 2025, 113, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, S.A.; Borba, R.; Taba, M., Jr.; Garcia, C.D.; Carrilho, E. Determination of nitrite in saliva using microfluidic paper-based analytical devices. Anal. Chim. Acta 2014, 809, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Brazaca, L.C.; Imamura, A.H.; Blasques, R.V.; Camargo, J.R.; Janegitz, B.C.; Carrilho, E. The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives. Biosens. Bioelectron. 2024, 246, 115846. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.R.; Silva-Neto, H.A.; Castro, L.F.; Oliveira, K.A.; Figueredo, F.; Cortón, E.; Coltro, W.K.T. “Do it yourself” protocol to fabricate dual-detection paper-based analytical device for salivary biomarker analysis. Anal. Bioanal. Chem. 2023, 415, 4391–4400. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.L.; Trevisan, G.L.; Taba Junior, M. O estado atual e os avanços no diagnóstico da doença periodontal e da cárie dentária. Rev. Da Assoc. Paul. De Cir. Dent. 2016, 70, 358–362. [Google Scholar]
- Lima, M.P.; Mendes, J.L.; Azevedo, J.K.N.; Araújo, M.C.; Araújo, A.M.P. Diagnóstico de DOenças Periodontais por meio de Biomarcadores Salivares: Revisão de Literatura. Rev. Salusvita 2019, 38, 811–820. [Google Scholar]
- Navazesh, M. Methods for collecting saliva. Ann. N. Y. Acad. Sci. 1993, 694, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, W.; Fujii, Y.; Kanehira, T.; Asano, K.; Izumi, H. A novel assay system for myeloperoxidase activity in whole saliva. Clin. Biochem. 2008, 41, 584–590. [Google Scholar] [CrossRef] [PubMed]
- van der Veen, B.S.; de Winther, M.P.; Heeringa, P. Myeloperoxidase: Molecular mechanisms of action and their relevance to human health and disease. Antioxid. Redox Signal. 2009, 11, 2899–2937. [Google Scholar] [CrossRef] [PubMed]
- Jasim, F.S.; Al-Ghurabi, B.H.; Abdulameer, L.A. Salivary levels of azurocidin and soluble azurophilic granules in periodontal disease. J. Med. Life 2024, 17, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Toczewska, J.; Zalewska, A.; Konopka, T.; Maciejczyk, M. Enzymatic antioxidants activity in gingival crevicular fluid and saliva in advanced periodontitis. Oral Dis. 2023, 29, 3559–3570. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.P.; Trevisan, G.L.; Macedo, G.O.; Palioto, D.B.; Souza, S.L.; Grisi, M.F.; Novaes, A.B., Jr.; Taba, M., Jr. Salivary interleukin-6, matrix metalloproteinase-8, and osteoprotegerin in patients with periodontitis and diabetes. J. Periodontol. 2010, 81, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Wignarajah, S.; Suaifan, G.A.; Bizzarro, S.; Bikker, F.J.; Kaman, W.E.; Zourob, M. Colorimetric Assay for the Detection of Typical Biomarkers for Periodontitis Using a Magnetic Nanoparticle Biosensor. Anal. Chem. 2015, 87, 12161–12168. [Google Scholar] [CrossRef] [PubMed]
- Grayson, R.; Douglas, C.W.; Heath, J.; Rawlinson, A.; Evans, G.S. Activation of human matrix metalloproteinase 2 by gingival crevicular fluid and Porphyromonas gingivalis. J. Clin. Periodontol. 2003, 30, 542–550. [Google Scholar] [CrossRef] [PubMed]
- de Molon, R.S.; Rossa, C., Jr.; Thurlings, R.M.; Cirelli, J.A.; Koenders, M.I. Linkage of Periodontitis and Rheumatoid Arthritis: Current Evidence and Potential Biological Interactions. Int. J. Mol. Sci. 2019, 20, 4541. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Ceriello, A.; Buysschaert, M.; Chapple, I.; Demmer, R.T.; Graziani, F.; Herrera, D.; Jepsen, S.; Lione, L.; Madianos, P.; et al. Scientific evidence on the links between periodontal diseases and diabetes: Consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International diabetes Federation and the European Federation of Periodontology. Diabetes Res. Clin. Pract. 2018, 137, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Kareem, F.; Chau, Y.C.; Ahmed, M.U. Nb2CTx-supported bimetallic NPs@ZIF-8 nanohybrid as ECL signal amplifier and peroxidase mimics for chromogranin a immunosensing in human serum and saliva. Int. J. Biol. Macromol. 2025, 287, 138476. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Zhou, K.; Wang, J. Glucose Oxidase Coupling with Pistol-Like DNAzyme Based Colorimetric Assay for Sensitive Glucose Detection in Tears and Saliva. Appl. Biochem. Biotechnol. 2025, 197, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Vinita Nirala, N.R.; Tiwari, M.; Prakash, R. A nanoporous palladium(II) bridged coordination polymer acting as a peroxidase mimic in a method for visual detection of glucose in tear and saliva. Mikrochim. Acta 2018, 185, 245. [Google Scholar] [CrossRef] [PubMed]
- Choleva, T.G.; Gatselou, V.A.; Tsogas, G.Z.; Giokas, D.L. Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Mikrochim. Acta 2017, 185, 22. [Google Scholar] [CrossRef] [PubMed]
- Khiste, S.V.; Ranganath, V.; Nichani, A.S.; Rajani, V. Critical analysis of biomarkers in the current periodontal practice. J. Indian Soc. Periodontol. 2011, 15, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Todorović, T.; Dozić, I.; Pavlica, D.; Marković, D.; Brajović, G.; Ivanović, M.; Stevanović, G.; Mirković, S.; Andjelski, B. Use of saliva as a diagnostic fluid in dentistry. Srp. Arh. Za Celok. Lek. 2005, 133, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Kim, C.J.; Camargo, P.M. Salivary biomarkers in the diagnosis of periodontal diseases. J. Calif. Dent. Assoc. 2013, 41, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Lahdentausta, L.S.J.; Paju, S.; Mäntylä, P.; Buhlin, K.; Tervahartiala, T.; Pietiäinen, M.; Alfthan, H.; Nieminen, M.S.; Sinisalo, J.; Sorsa, T.; et al. Saliva and serum biomarkers in periodontitis and coronary artery disease. J. Clin. Periodontol. 2018, 45, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Kemer Doğan, E.S.; Kırzıoğlu, F.Y.; Doğan, B.; Fentoğlu, Ö.; Kale, B. The effect of menopause on the relationship between hyperlipidemia and periodontal disease via salivary 8-hydroxy-2′-deoxyguanosine and myeloperoxidase levels. Acta Odontol. Scand. 2018, 76, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Alahmad, W.; Sahragard, A.; Varanusupakul, P. Online and offline preconcentration techniques on paper-based analytical devices for ultrasensitive chemical and biochemical analysis: A review. Biosens. Bioelectron. 2021, 194, 113574. [Google Scholar] [CrossRef] [PubMed]
- Hamedpour, V.; Oliveri, P.; Leardi, R.; Citterio, D. Chemometric challenges in development of paper-based analytical devices: Optimization and image processing. Anal. Chim. Acta 2020, 1101, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bellagambi, F.G.; Lomonaco, T.; Salvo, P.; Vivaldi, F.; Hangou¨et, M.; Ghimenti, S.; Biagini, D.; Di Francesco, F.; Fuoco, R.; Errachid, A. Saliva sampling: Methods and devices. An overview. TrAC Trends Anal. Chem. 2020, 124, 115781. [Google Scholar] [CrossRef]
- Griffith, A.; Chande, C.; Kulkarni, S.; Morel, J.; Cheng, Y.H.; Shimizu, E.; Cugini, C.; Basuray, S.; Kumar, V. Point-of-care diagnostic devices for periodontitis—Current trends and urgent need. Sens. Diagn. 2024, 3, 1119–1134. [Google Scholar] [CrossRef] [PubMed]
Parameters | Health Group (n = 15) | Periodontal Disease Group (n = 15) | p-Value |
---|---|---|---|
Age | 41.0 ± 9.61 a | 48.0 ± 9.83 a | 0.0585 |
n. teeth | 22.0 ± 3.57 b | 17.0 ± 4.35 a | 0.0018 |
PPD (mm) | 1.31 ± 0.05 b | 2.11 ± 0.30 a | 0.0001 |
BOP (%) | 0.00 b | 28.0 ± 8.0 a | 0.0001 |
CAL (mm) | 1.77 ± 0.56 b | 2.59 ± 0.54 a | 0.0003 |
PPD 4–6 (n) | 0.00 b | 4.20 ± 5.09 a | 0.0034 |
PPD = 7 (n) | 0.00 b | 1.00 ± 1.0 a | 0.0043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leão, J.C.; Mazzu, T.; Leão, V.; Souza, P.G.; Moura, N.M.V.; Carrilho, E.; Taba, M., Jr. Development of a Microfluidic Paper-Based Analytical Device for Myeloperoxidase Detection in Periodontitis. Dent. J. 2025, 13, 321. https://doi.org/10.3390/dj13070321
Leão JC, Mazzu T, Leão V, Souza PG, Moura NMV, Carrilho E, Taba M Jr. Development of a Microfluidic Paper-Based Analytical Device for Myeloperoxidase Detection in Periodontitis. Dentistry Journal. 2025; 13(7):321. https://doi.org/10.3390/dj13070321
Chicago/Turabian StyleLeão, Juliane Caroline, Thiago Mazzu, Vitor Leão, Paola Gomes Souza, Nathalya Maria Vilela Moura, Emanuel Carrilho, and Mario Taba, Jr. 2025. "Development of a Microfluidic Paper-Based Analytical Device for Myeloperoxidase Detection in Periodontitis" Dentistry Journal 13, no. 7: 321. https://doi.org/10.3390/dj13070321
APA StyleLeão, J. C., Mazzu, T., Leão, V., Souza, P. G., Moura, N. M. V., Carrilho, E., & Taba, M., Jr. (2025). Development of a Microfluidic Paper-Based Analytical Device for Myeloperoxidase Detection in Periodontitis. Dentistry Journal, 13(7), 321. https://doi.org/10.3390/dj13070321