Three-Dimensional Dental Analysis in Subjects with Skeletal Malocclusion: A Retrospective Observational Study
Abstract
1. Background
2. Materials and Methods
2.1. Measurements on 3-D Models
- −
- M-D diameters of the dental elements (right first molar to left first molar) of the upper and lower arches (mm).
- −
- Total* Bolton index (%).
- −
- Anterior** Bolton index (%).
- −
- Total* surface area of the clinical crowns for both the maxilla and mandible (mm2).
- −
- Anterior** surface area of the clinical crowns for both the maxilla and mandible (mm2).
- −
- Total* volume of the clinical crowns of the maxilla and mandible (mm3).
- −
- Anterior** volume of the clinical crowns of the maxilla and mandible (mm3).
2.2. Measurements on Digital Cephalometry
- −
- SNA: angle between the S point (sella turcica), the nasion (N), and the A point (supraspinal point of the maxilla).
- −
- SNB: angle between the S point (sella turcica), the nasion (N), and the B point (submental point of the jaw).
- −
- ANB: difference between the angular values of SNA and SNB.
2.3. Statistical Analysis
2.3.1. Sample Description
2.3.2. Inferential Analysis
- −
- To investigate possible correlations between skeletal class (ANB) and dental size (linear dental values, total and anterior surface values, total and anterior volumetric values, total and anterior Bolton indices), Hoeffding’s test was used. To assess potential associations between continuous variables, we employed Hoeffding’s D test, a non-parametric method capable of detecting a wide range of dependencies, including nonlinear and non-monotonic relationships. Unlike Pearson’s correlation, which assumes linearity, and Spearman’s rank correlation, which is limited to monotonic trends, Hoeffding’s test can identify more complex patterns of association without relying on specific distributional assumptions. This makes it particularly suitable for biomedical and morphometric data, where relationships among variables may not follow conventional forms. The use of Hoeffding’s test is consistent with previous studies where flexible modeling of dependence structures was required [37].
- −
- To investigate the possible correlation between skeletal class (class I, II, III) and Bolton index (total and anterior) an additional test, Cramér’s V, was performed, as both variables are multilevel categorical [38];
- −
- To investigate possible correlations between skeletal class (class I, II, III) and dental measurements (total and anterior surface values, total and anterior volumetric values, total and anterior Bolton indices), analysis of variance (ANOVA) was used followed by the Tukey’s post hoc HSD test [39].
- −
- Three logit models were estimated, one for each class, to facilitate the assessment of the impact of the collected variables on the probability of belonging to a specific class. The logit model is a statistical model that relates a binary dependent variable (Y) and a set of explanatory variables (X) that are assumed to have an influence on the probability of belonging to a specific class. The model is specified as follows: classi = C + Sexi + Agei + Sup_Area_Tot_Sup + Sup_Area_Tot_Inf + Bolton_tot + Bolton_ant + Vol_tot_inf + Vol_ant_sup + εi (Where: Sexi = sex; Agei = age; Sup_Area_Tot_Sup = upper total surface area; Sup_Area_Tot_Inf = lower total surface area; Bolton_tot = total Bolton index; Bolton_ant = anterior Bolton index; Vol_tot_inf = lower total volume; Vol_ant_sup = upper anterior volume). The significance level was set at 0.050.
3. Results
3.1. Sample Description
3.2. Inferential Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciuffolo, F.; Manzoli, L.; D’Attilio, M.; Tecco, S.; Muratore, F.; Festa, F.; Romano, F. Prevalence and distribution by gender of occlusal characteristics in a sample of Italian secondary school students: A cross-sectional study. Eur. J. Orthod. 2005, 27, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Dimberg, L.; Lennartsson, B.; Söderfeldt, B.; Bondemark, L. Malocclusions in children at 3 and 7 years of age: A longitudinal study. Eur. J. Orthod. 2013, 35, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Baubiniene, D.; Sidlauskas, A.; Miseviciene, I. The need for orthodontic treatment among 10-11- and 14-15-year-old Lithuanian schoolchildren. Medicina 2009, 45, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Góis, E.G.; Vale, M.P.; Paiva, S.M.; Abreu, M.H.; Serra-Negra, J.M.; Pordeus, I.A. Incidence of malocclusion between primary and mixed dentitions among Brazilian children. A 5-year longitudinal study. Angle Orthod. 2012, 82, 495–500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giordano, A.; Guarnieri, R.; Galluccio, G.; Cassetta, M.; Di Giorgio, R.; Polimeni, A.; Barbato, E. Epidemiology of Malocclusion in 3,491 Subjects Attending Public Dental Service in Rome (Italy): Evaluation of the Orthodontic Treatment Need Index. J. Contemp. Dent. Pract. 2019, 20, 631–638. [Google Scholar] [PubMed]
- Othman, S.A.; Harradine, N.W.T. Tooth-size Discrepancy and Bolton’s Ratios: A literature review. J. Orthod. 2006, 33, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Angle, E.H. Treatment of malocclusion of the teeths and fracture of the maxillae. In Angle’s System, 6th ed.; SS White dental Mfg CO.: Philadelphia, PA, USA, 1900. [Google Scholar]
- Lawrence, F. Andrews D.D.S. The six keys to normal occlusion. Am. J. Orthod. 1971, 62, 296–309. [Google Scholar]
- Ballard, C.F. Biological orthodontics for the general practitioner*. Aust. Dent. J. 1964, 9, 244–257. [Google Scholar] [CrossRef]
- Steiner, C.C. Cephalometrics in Clinical Practice. Angle Orthodontist. 1959, 29, 8–29. [Google Scholar]
- Ackerman, J.L.; Proffit, W.R. The characteristics of malocclusion: A modern approach to classification and diagnosis. Am. J. Orthod. 1969, 56, 443–454. [Google Scholar] [CrossRef] [PubMed]
- John, C.; Benenett, J.C.; McLaughlin, R.P. Orthodontic Management of the Dentition with the Pre-Adjusted Appliance; Taylor & Francis Ltd.: Abingdon, UK, 1997. [Google Scholar]
- Ballard, M.L. Asymmetry in tooth size: A factor in the etiology, diagnosis and treatment of malocclusion. Angle Orthod. 1944, 14, 67–70. [Google Scholar]
- Proffit, W.R. Contemporary Orthodontics, 3rd ed.; Mosby: St Louis, MO, USA, 2000. [Google Scholar]
- Lombardi, R.E. The principles of visual perception and their clinical application to denture esthetics. J. Prosthet. Dent. 1973, 29, 358–382. [Google Scholar] [CrossRef]
- Ward, D.H. Proportional Smile Design: Using the Recurring Esthetic Dental Proportion to Correlate the Widths and Lengths of the Maxillary Anterior Teeth with the Size of the Face. Dent. Clin. N. Am. 2015, 59, 623–638. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.E.; Maskeroni, A.J.; Lorton, L. Frequency of Bolton tooth-size discrepancies among orthodontic patients. Am. J. Orthod. Dentofac. Orthop. 1996, 110, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Crosby, D.R.; Alexander, C.G. The occurrence of tooth size discrepancies among different malocclusion groups. Am. J. Orthod. Dentofac. Orthop. 1989, 95, 457–461. [Google Scholar] [CrossRef]
- Lundstrom, A. Intermaxillary tooth width ratio and tooth alignment and occlusion. Acta Odontol. Scand. 1955, 12, 265–292. [Google Scholar] [CrossRef] [PubMed]
- Bolton, W.A. Disharmony in tooth size and its relation to the analyses and treatment of malocclusion. Angle Orthod. 1958, 28, 113–130. [Google Scholar]
- Bolton, W.A. The clinical application of tooth size analysis. Am. J. Orthod. 1962, 48, 504–529. [Google Scholar] [CrossRef]
- Kathariya, M.D.; Nikam, A.P.; Chopra, K.; Patil, N.N.; Raheja, H.; Kathariya, R. Prevalence of Dental Anomalies among School Going Children in India. J. Int. Oral Health 2013, 5, 10–14. [Google Scholar] [PubMed] [PubMed Central]
- Kim, Y.H. Investigation of hypodontia as clinically related dental anomaly: Prevalence and characteristics. ISRN Dent. 2011, 2011, 246135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uslu, O.; Akcam, M.O.; Evirgen, S.; Cebeci, I. Prevalence of dental anomalies in various malocclusions. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Altug-Atac, A.T.; Erdem, D. Prevalence and distribution of dental anomalies in orthodontic patients. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Küchler, E.C.; Risso, P.A.; Costa, M.d.C.; Modesto, A.; Vieira, A.R. Studies of dental anomalies in a large group of school children. Arch. Oral Biol. 2008, 53, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Thongudomporn, U.; Freer, T.J. Prevalence of dental anomalies in orthodontic patients. Aust. Dent. J. 1998, 43, 395–398. [Google Scholar] [PubMed]
- Laganà, G.; Venza, N.; Borzabadi-Farahani, A.; Fabi, F.; Danesi, C.; Cozza, P. Dental anomalies: Prevalence and associations between them in a large sample of non-orthodontic subjects, a cross-sectional study. BMC Oral Health 2017, 17, 62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fernandez, C.C.A.; Pereira, C.V.C.A.; Luiz, R.R.; Vieira, A.R.; De Castro Costa, M. Dental anomalies in different growth and skeletal malocclusion patterns. Angle Orthod. 2018, 88, 195–201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pasini, M.; Carli, E.; Giambastiani, F.; Giuca, M.R.; Tripodi, D. Three-Dimensional Analysis of Upper and Lower Arches Using Digital Technology: Measurement of the Index of Bolton and Correspondence between Arch Shapesand Orthodontic Arches. Dent. J. 2023, 11, 188. [Google Scholar] [CrossRef]
- Hardan, L.; Bourgi, R.; Lukomska-Szymanska, M.; Hernández-Cabanillas, J.C.; Zamarripa-Calderón, J.E.; Jorquera, G.; Ghishan, S.; Cuevas-Suárez, C.E. Effect of scanning strategies on the accuracy of digital intraoral scanners: A meta-analysis of in vitro studies, hardan). J. Adv. Prosthodont. 2023, 15, 315–332. [Google Scholar] [CrossRef]
- Jedliński, M.; Mazur, M.; Grocholewicz, K.; Janiszewska-Olszowska, J. 3D Scanners in Orthodontics-Current Knowledge and Future Perspectives-A Systematic Review Jedlinski. Int. J. Environ. Res. Public Health 2021, 18, 1121. [Google Scholar] [CrossRef]
- Kim, J.; Lagravére, M.O. Accuracy of Bolton analysis measured in laser scanned digital models compared with plaster models (gold standard) and cone-beam computer tomography. J. Orthod. 2016, 46, 13–19. [Google Scholar] [CrossRef]
- Salcedo, H.L.; Huarcaya, N.E.H. Degree of reliability of the assessment of the Bolton analysis in three-dimensional virtual models versus plaster models. Una Revis. 2023, 11, e155. [Google Scholar] [CrossRef]
- Amuk, N.G.; Karsli, E.; Kurt, G. Comparison of dental measurements between conventional plaster models, digital models obtained by impression scanning and plaster model scanning. Int. Orthod. 2019, 17, 151–158. [Google Scholar] [CrossRef]
- Houston, W.J. The analysis of errors in orthodontic measurements. Am. J. Orthod. 1983, 83, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Hoeffding, W. A non-parametric test of independence. Ann. Math. Stat. 1948, 19, 546–557. [Google Scholar] [CrossRef]
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Fisher Ronald, A. The Correlation Between Relatives on the Supposition of Mendelian Inheritance; Philosophical Transactions of the Royal Society of Edinburgh: Edinburgh, UK, 1918. [Google Scholar]
- Rudolph, D.; Dominguez, P.; Ahn, K.; Thinh, T. The use of tooth thickness in predicting intermaxillary tooth-size discrepancies. Angle Orthod. 1998, 68, 133–138. [Google Scholar] [CrossRef]
- Aldrees, A.M.; Al-Shujaa, A.M.; Alqahtani, M.A.; Aljhani, A.S. Is arch form influenced by sagittal molar relationship or Bolton tooth-size discrepancy? BMC Oral Heal. 2015, 15, 70. [Google Scholar] [CrossRef] [PubMed]
- Nie, Q.; Lin, J. Comparison of intermaxillary tooth size discrepancies among different malocclusion groups. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 539–544. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, G.; Millett, D.T.; Barry, M.K.; McIntyre, G.T.; Cronin, M.S. Tooth size discrepancies in Irish orthodontic patients among different malocclusion groups. Angle Orthod. 2011, 81, 130–133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mohammad, M.G.; Din, S.N.; Khamis, A.H.; Athanasiou, A.E. Overall and Anterior Tooth Size Ratios in a Group of Emiratis. Open Dent. J. 2018, 12, 655–663. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alkofide, E.; Hashim, H. Intermaxillary tooth size discrepancies among different malocclusion classes: A comparative study. J. Clin. Pediatr. Dent. 2002, 26, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Fattahi, H.R.; Pakshir, H.R.; Hedayati, Z. Comparison of tooth size discrepancies among different malocclusion groups. Eur. J. Orthod. 2006, 28, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.J.; Chu, F.T.; Qian, Y.F. [Bolton tooth-size discrepancy among different skeletal malocclusion groups]. Shanghai Kou Qiang Yi Xue 2009, 18, 251–254. (In Chinese) [Google Scholar] [PubMed]
- Al-Khateeb, S.N.; Abu Alhaija, E.S. Tooth size discrepancies and arch parameters among different malocclusions in a Jordanian sample. Angle Orthod. 2006, 76, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Basaran, G.; Selek, M.; Hamamci, O.; Akkuş, Z. Intermaxillary Bolton tooth size discrepancies among different malocclusion groups. Angle Orthod. 2006, 76, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Abe, R.; Kuroki, H.; Oka, K.; Shimooka, S. Tooth size discrepancies among different malocclusions in a Japanese orthodontic population. Angle Orthod. 2008, 78, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Zerouaoui, M.F.; Bahije, L.; Zaoui, F.; Regragui, S. Study of variations of the Bolton index in the Moroccan population depending on angle malocclusion class. Int. Orthod. 2014, 12, 213–221. (In French) [Google Scholar] [CrossRef] [PubMed]
- Jabri, M.A.; Wu, S.; Zhang, Y.; Ma, J.; Wang, L. A Review on Comparison of Tooth Size Discrepancies among Angle’s Class I, II, and III Malocclusion: Is There a Significance? J. Contemp. Dent. Pract. 2019, 20, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Machado, V.; Botelho, J.; Mascarenhas, P.; Mendes, J.J.; Delgado, A. A systematic review and meta-analysis on Bolton’s ratios: Normal occlusion and malocclusion. J. Orthod. 2020, 47, 7–29. [Google Scholar] [CrossRef] [PubMed]
- Atteeri, A.; Neela, P.K.; Mamillapalli, P.K.; Sesham, V.M.; Keesara, S.; Chandra, J.; Monica, U.; Mohan, V.; Miryala, S.; Khan, F.A.; et al. Analysis of MYO1H Gene Polymorphism in Skeletal Class-III Malocclusion Due to Mandibular Prognathism. Glob. Med. Genet. 2021, 8, 156–161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tassopoulou-Fishell, M.; Deeley, K.; Harvey, E.M.; Sciote, J.; Vieira, A.R. Genetic variation in myosin 1H contributes to mandibular prognathism. Am. J. Orthod. Dentofac. Orthop. 2012, 141, 51–59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, P.; Chaturvedi, T.P.; Sharma, V. Expressional Analysis of MSX1 (Human) Revealed its Role in Sagittal Jaw Relationship. J. Clin. Diagn. Res. 2017, 11, ZC71–ZC77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gershater, E.; Li, C.; Ha, P.; Chung, C.H.; Tanna, N.; Zou, M.; Zheng, Z. Genes and Pathways Associated with Skeletal Sagittal Malocclusions: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 13037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barbato, E.; Traversa, A.; Guarnieri, R.; Giovannetti, A.; Genovesi, M.L.; Magliozzi, M.R.; Paolacci, S.; Ciolfi, A.; Pizzi, S.; Di Giorgio, R.; et al. Whole exome sequencing in an Italian family with isolated maxillary canine agenesis and canine eruption anomalies. Arch. Oral Biol. 2018, 91, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Cassetta, M.; Guarnieri, R.; Altieri, F.; Brandetti, G.; Padalino, G.; Di Giorgio, R.; Barbato, E. Relationship between upper lateral incisors anomalies and palatal displaced canine: A case-control retrospective study. Minerva Stomatol. 2020, 69, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Basdra, E.K.; Kiokpasoglou, M.N.; Komposch, G. Congenital tooth anomalies and malocclusions: A genetic link? Eur. J. Orthod. 2001, 23, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Basdra, E.K.; Kiokpasoglou, M.; Stellzig, A. The Class II Division 2 craniofacial type is associated with numerous congenital tooth anomalies. Eur. J. Orthod. 2000, 22, 529–535. [Google Scholar] [CrossRef] [PubMed]
n | %M | %F | |
---|---|---|---|
Sample | 90 | 48 | 52 |
Class I | 30 | 30 | 36 |
Class II | 30 | 35 | 32 |
Class III | 30 | 35 | 32 |
Variable | Obs | Mean | Std.Dev. | Min | Max |
---|---|---|---|---|---|
ANB | 90 | 2.1007 | 4.2879 | −9.17 | 11 |
D15 | 90 | 7.0765 | 0.4876 | 5.557 | 8.587 |
D16 | 90 | 10.8231 | 0.7093 | 8.25 | 12.538 |
D14 | 90 | 7.2395 | 0.557 | 5.792 | 8.728 |
D13 | 90 | 8.0876 | 0.6373 | 6.025 | 9.636 |
D12 | 90 | 7.2024 | 0.5592 | 5.626 | 8.757 |
D11 | 90 | 8.9318 | 0.6448 | 7.115 | 10.541 |
D21 | 90 | 8.9676 | 0.6335 | 6.98 | 11.017 |
D22 | 90 | 7.0042 | 0.5544 | 5.766 | 8.874 |
D23 | 90 | 8.0258 | 0.6277 | 6.161 | 9.646 |
D24 | 90 | 7.277 | 0.5785 | 5.351 | 9.221 |
D25 | 90 | 7.0436 | 0.4952 | 5.649 | 8.366 |
D26 | 90 | 10.8232 | 0.7202 | 8.998 | 13.463 |
D36 | 90 | 11.1984 | 0.6716 | 8.353 | 12.677 |
D35 | 90 | 7.6295 | 0.4535 | 6.543 | 9.288 |
D34 | 90 | 7.3783 | 0.4923 | 6.312 | 8.765 |
D33 | 90 | 7.1531 | 0.6259 | 5.383 | 8.484 |
D32 | 90 | 6.1791 | 0.4992 | 4.948 | 7.508 |
D41 | 90 | 5.6335 | 0.4265 | 4.544 | 7.142 |
D31 | 90 | 5.6096 | 0.3922 | 4.555 | 6.714 |
D42 | 90 | 6.2095 | 0.5225 | 4.959 | 7.833 |
D43 | 90 | 7.8896 | 0.8466 | 5.734 | 7282 |
D44 | 90 | 7.3814 | 0.4892 | 6.118 | 8.555 |
D45 | 90 | 7.5627 | 0.5662 | 6.183 | 9.117 |
D46 | 90 | 11.1991 | 0.8182 | 9.145 | 13.758 |
Surface area Tot Sup | 90 | 2440.672 | 344.5682 | 1440.01 | 3254.23 |
Surface area Tot Inf | 90 | 2040.161 | 284.6851 | 1315.65 | 2661.82 |
Surface area ant sup | 90 | 1171.523 | 165.3927 | 691.2048 | 1562.03 |
Surface area ant inf | 90 | 775.2613 | 108.1803 | 499.947 | 1011.492 |
Vol Tot Sup mm3 | 90 | 2288.58 | 566.4049 | 1176.57 | 3624.61 |
Vol Tot Inf mm3 | 90 | 1774.072 | 442.7722 | 972.34 | 3053.49 |
Vol Ant Sup mm3 | 90 | 1098.519 | 271.8743 | 564.7536 | 1739.813 |
Vol Ant Inf mm3 | 90 | 674.1474 | 168.2535 | 369.4892 | 1160.326 |
Bolton index Tot | 90 | 171.644 | 760.667 | 85.7055 | 7307.75 |
Bolton index Ant | 90 | 241.8613 | 1549.662 | 71.2142 | 14,800 |
Parameters | Class I (n = 30) | Class II (n = 30) | Class III (n = 30) | ANOVA p-Value | Tukey’s Post Hoc HSD Test | |||||
---|---|---|---|---|---|---|---|---|---|---|
Median | ±SD | Median | ±SD | Median | ±SD | I and II p-Value | I and III p-Value | II and III p-Value | ||
Upper total volume (mm3) | 2157.6 | 521.5 | 2304 | 631.1 | 2404.1 | 531.5 | 0.239 | 0.575 | 0.213 | 0.771 |
Lower total volume (mm3) | 1602.3 | 411.8 | 1702.2 | 443.9 | 1937.7 | 420.3 | 0.012 * | 0.236 | 0.008 ** | 0.337 |
Upper anterior volume (mm3) | 1035.6 | 250.3 | 1105.9 | 302.9 | 1153.96 | 255.1 | 0.240 | 0.580 | 0.215 | 0.781 |
Anterior inferior volume (mm3) | 608.9 | 156.5 | 677.2 | 168.7 | 736.3 | 159.7 | 0.012 * | 0.245 | 0.009 ** | 0.354 |
Upper total surface area (mm2) | 2305.8 | 325.4 | 2507.4 | 355 | 2508.8 | 322.8 | 0.029 * | 0.056 | 0.054 | 1.000 |
Lower total surface area (mm2) | 1944.6 | 227.1 | 2073.3 | 258.3 | 2102.6 | 340.3 | 0.071 | 0.181 | 0.078 | 0.913 |
Upper anterior surface area (mm2) | 1106.8 | 156.2 | 1203.6 | 170.4 | 1204.2 | 154.9 | 0.028 * | 0.061 | 0.076 | 1.000 |
Lower anterior surface area (mm2) | 738.9 | 86.3 | 787.8 | 98.1 | 799.1 | 129.3 | 0.072 | 0.181 | 0.078 | 0.913 |
Total Bolton index | 91.3 | 2.2 | 331.6 | 1317.6 | 92 | 2.6 | 0.374 | 0.443 | 1.000 | 0.445 |
Anterior Bolton index | 78.2 | 3.3 | 569 | 2684 | 78.4 | 2.4 | 0.371 | 0.441 | 1.000 | 0.441 |
Class I | Coef. | St.Err. | t-Value | p-Value | [95% Conf | Interval] | Sig | ||
---|---|---|---|---|---|---|---|---|---|
Age | −0.286 | 0.085 | −3.36 | 0.001 | −0.452 | −0.119 | *** | ||
Sex | 0.238 | 0.540 | 0.44 | 0.659 | −0.820 | 1.296 | |||
Lower Tot Vol | 0.000 | 0.001 | 0.27 | 0.784 | −0.002 | 0.003 | |||
Tot Surf Are | −0.001 | 0.001 | −1.28 | 0.199 | −0.004 | 0.001 | |||
Tot Surf Are Ant | −0.001 | 0.002 | −0.61 | 0.540 | −0.004 | 0.002 | |||
Constant | 8.940 | 3.221 | 2.77 | 0.006 | 2.627 | 15.254 | *** | ||
Mean dependent var | 0.333 | SD dependent var | 0.474 | ||||||
Pseudo r-squared | 0.20 | Number of obs | 90.000 | ||||||
Chi-squared | 24.802 | Prob > chi2 | 0.000 | ||||||
Akaike crit. (AIC) | 101.771 | Bayesian crit. (BIC) | 116.770 |
Class II | Coef. | St.Err. | t-Value | p-Value | [95% Conf | Interval] | Sig | ||
---|---|---|---|---|---|---|---|---|---|
Age | −0.005 | 0.049 | −0.10 | 0.924 | −0.101 | 0.092 | |||
Sex | 0.304 | 0.537 | 0.57 | 0.572 | −0.748 | 1.355 | |||
Lower Tot | |||||||||
Vol | 0.000 | 0.001 | −0.25 | 0.800 | −0.003 | 0.002 | |||
Tot Surf | |||||||||
Are | 0.005 | 0.002 | 2.21 | 0.027 | 0.001 | 0.010 | ** | ||
Tot Surf | |||||||||
Are | 0.001 | 0.002 | 0.82 | 0.415 | −0.002 | 0.005 | |||
Tot Bolton | |||||||||
Ind | −0.313 | 0.152 | −2.06 | 0.039 | −0.610 | −0.015 | ** | ||
Upper Ant | |||||||||
Vol | −0.006 | 0.003 | −2.06 | 0.039 | −0.012 | 0.000 | ** | ||
Ant Bolton | |||||||||
Ind | 0.212 | 0.116 | 1.83 | 0.067 | −0.015 | 0.439 | * | ||
Constant | 2.683 | 11.726 | 0.23 | 0.819 | −20.299 | 25.665 | |||
Mean dependent var | 0.333 | SD dependent var | 0.474 | ||||||
Pseudo r-squared | 0.143 | Number of obs | 90.000 | ||||||
Chi-squared | 16.341 | Prob > chi2 | 0.038 | ||||||
Akaike crit. (AIC) | 116.232 | Bayesian crit. (BIC) | 138.730 |
Class III | Coef. | St.Err. | t-Value | p-Value | [95% Conf | Interval] | Sig | ||
---|---|---|---|---|---|---|---|---|---|
Age | 0.195 | 0.068 | 2.88 | 0.004 | 0.063 | 0.328 | *** | ||
Sex | −0.483 | 0.569 | −0.85 | 0.396 | −1.599 | 0.632 | |||
Lower Tot | |||||||||
Vol | 0.002 | 0.001 | 1.35 | 0.178 | −0.001 | 0.004 | |||
Tot Surf | |||||||||
Are | 0.001 | 0.002 | 0.56 | 0.574 | −0.003 | 0.005 | |||
Tot Surf | |||||||||
Are | −0.001 | 0.002 | −0.86 | 0.390 | −0.004 | 0.002 | |||
Tot Bolton | |||||||||
Ind | 0.173 | 0.144 | 1.20 | 0.229 | −0.109 | 0.454 | |||
Upper Ant | |||||||||
Vol | −0.002 | 0.003 | −0.70 | 0.483 | −0.007 | 0.003 | |||
Ant Bolton | |||||||||
Ind | −0.132 | 0.129 | −1.03 | 0.305 | −0.385 | 0.120 | |||
Constant | −10.556 | 11.329 | −0.93 | 0.351 | −32.760 | 11.648 | |||
Mean dependent var | 0.333 | SD dependent var | 0.474 | ||||||
Pseudo r-squared | 0.212 | Number of obs | 90.000 | ||||||
Chi-squared | 24.282 | Prob > chi2 | 0.002 | ||||||
Akaike crit. (AIC) | 108.290 | Bayesian crit. (BIC) | 130.789 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarnieri, R.; Squillace, F.; Podda, R.; Monterossi, A.S.; Galluccio, G.; Di Giorgio, R.; Barbato, E. Three-Dimensional Dental Analysis in Subjects with Skeletal Malocclusion: A Retrospective Observational Study. Dent. J. 2025, 13, 280. https://doi.org/10.3390/dj13070280
Guarnieri R, Squillace F, Podda R, Monterossi AS, Galluccio G, Di Giorgio R, Barbato E. Three-Dimensional Dental Analysis in Subjects with Skeletal Malocclusion: A Retrospective Observational Study. Dentistry Journal. 2025; 13(7):280. https://doi.org/10.3390/dj13070280
Chicago/Turabian StyleGuarnieri, Rosanna, Francesca Squillace, Rachele Podda, Alfredo Salvatore Monterossi, Gabriella Galluccio, Roberto Di Giorgio, and Ersilia Barbato. 2025. "Three-Dimensional Dental Analysis in Subjects with Skeletal Malocclusion: A Retrospective Observational Study" Dentistry Journal 13, no. 7: 280. https://doi.org/10.3390/dj13070280
APA StyleGuarnieri, R., Squillace, F., Podda, R., Monterossi, A. S., Galluccio, G., Di Giorgio, R., & Barbato, E. (2025). Three-Dimensional Dental Analysis in Subjects with Skeletal Malocclusion: A Retrospective Observational Study. Dentistry Journal, 13(7), 280. https://doi.org/10.3390/dj13070280