Efficacy of the CALM® Algorithm in Reducing Motion-Induced Artifacts in CBCT Imaging: A Fractal Dimension Analysis of Trabecular Bone
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez-Molina, D.; Velazquez-Ameijide, J.; Quintana, V.; Arregui-Dalmases, C.; Crandall, J.R.; Subit, D.; Kerrigan, J.R. Fractal Dimension and Mechanical Properties of Human Cortical Bone. Med. Eng. Phys. 2013, 35, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, I.; Uzcátegui, G. Fractals in Dentistry. J. Dent. 2011, 39, 273–292. [Google Scholar] [CrossRef] [PubMed]
- White, S.C.; Rudolph, D.J. Alterations of the Trabecular Pattern of the Jaws in Patients with Osteoporosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 1999, 88, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Nackaerts, O.; Duyck, J.; Maes, F.; Jacobs, R. Bone Quality Assessment Based on Cone Beam Computed Tomography Imaging. Clin. Oral Implant. Res. 2009, 20, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, B.F.; De Castro, J.G.K.; De Melo, N.S.; De Souza Figueiredo, P.T.; Moreira-Mesquita, C.R.; De Paula, A.P.; Sindeaux, R.; Leite, A.F. Fractal Dimension Analysis on CBCT Scans for Detecting Low Bone Mineral Density in Postmenopausal Women. Imaging Sci. Dent. 2022, 52, 53. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, R.A.; Arnout, E.A.; Fotouh, M.M.A.E. Feasibility of Cone Beam Computed Tomography Radiomorphometric Analysis and Fractal Dimension in Assessment of Postmenopausal Osteoporosis in Correlation with Dual X-Ray Absorptiometry. Dentomaxillofacial Radiol. 2016, 45, 20160212. [Google Scholar] [CrossRef] [PubMed]
- Chrcanovic, B.R.; Albrektsson, T.; Wennerberg, A. Bone Quality and Quantity and Dental Implant Failure: A Systematic Review and Meta-Analysis. Int. J. Prosthodont. 2017, 30, 219–237. [Google Scholar] [CrossRef] [PubMed]
- Voumard, B.; Maquer, G.; Heuberger, P.; Zysset, P.K.; Wolfram, U. “Peroperative Estimation of Bone Quality and Primary Dental Implant Stability”. J. Mech. Behav. Biomed. Mater. 2019, 92, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Magat, G.; Oncu, E.; Ozcan, S.; Orhan, K. Comparison of Cone-Beam Computed Tomography and Digital Panoramic Radiography for Detecting Peri-Implant Alveolar Bone Changes Using Trabecular Micro-Structure Analysis. J. Korean Assoc. Oral Maxillofac. Surg. 2022, 48, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Tibúrcio-Machado, C.S.; Michelon, C.; Zanatta, F.B.; Gomes, M.S.; Marin, J.A.; Bier, C.A. The Global Prevalence of Apical Periodontitis: A Systematic Review and Meta-analysis. Int. Endod. J. 2021, 54, 712–735. [Google Scholar] [CrossRef]
- Antony, D.P.; Thomas, T.; Nivedhitha, M.S. Two-Dimensional Periapical, Panoramic Radiography Versus Three-Dimensional Cone-Beam Computed Tomography in the Detection of Periapical Lesion After Endodontic Treatment: A Systematic Review. Cureus 2020, 12, e7736. [Google Scholar] [CrossRef] [PubMed]
- PradeepKumar, A.R.; Shemesh, H.; Nivedhitha, M.S.; Hashir, M.M.J.; Arockiam, S.; Maheswari, T.N.U.; Natanasabapathy, V. Diagnosis of Vertical Root Fractures by Cone-Beam Computed Tomography in Root-Filled Teeth with Confirmation by Direct Visualization: A Systematic Review and Meta-Analysis. J. Endod. 2021, 47, 1198–1214. [Google Scholar] [CrossRef]
- Kocak, A.T.Ö.; Bulut, D.G. Measurement of the Trabecular Bone Structure of the TMJ Region in Patients with Transverse Maxillary Deficiency: A CBCT Fractal Analysis Study. Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. 2021, 132, 352–360. [Google Scholar] [CrossRef]
- Pauwels, R.; Faruangsaeng, T.; Charoenkarn, T.; Ngonphloy, N.; Panmekiate, S. Effect of Exposure Parameters and Voxel Size on Bone Structure Analysis in CBCT. Dentomaxillofacial Radiol. 2015, 44, 20150078. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, D.; Eldib, M.E.; Hegazy, M.A.A.; Cho, M.H.; Cho, M.H.; Lee, S.Y. A Head Motion Estimation Algorithm for Motion Artifact Correction in Dental CT Imaging. Phys. Med. Biol. 2018, 63, 065014. [Google Scholar] [CrossRef] [PubMed]
- Spin-Neto, R.; Wenzel, A. Patient Movement and Motion Artefacts in Cone Beam Computed Tomography of the Dentomaxillofacial Region: A Systematic Literature Review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 121, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Magat, G.; Sener, S.O. Evaluation of Trabecular Pattern of Mandible Using Fractal Dimension, Bone Area Fraction, and Gray Scale Value: Comparison of Cone-Beam Computed Tomography and Panoramic Radiography. Oral Radiol. 2018, 35, 35–42. [Google Scholar] [CrossRef]
- Kato, C.N.; Barra, S.G.; Tavares, N.P.; Amaral, T.M.; Brasileiro, C.B.; Mesquita, R.A.; Abreu, L.G. Use of Fractal Analysis in Dental Images: A Systematic Review. Dentomaxillofacial Radiol. 2020, 49, 20180457. [Google Scholar] [CrossRef]
- Southard, T.E.; Southard, K.A.; Jakobsen, J.R.; Hillis, S.L.; Najim, C.A. Fractal Dimension in Radiographic Analysis of Alveolar Process Bone. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 1996, 82, 569–576. [Google Scholar] [CrossRef]
- Bianchi, A.E.; Dolci, G., Jr.; Sberna, M.T.; Sanfilippo, S. Factors affecting bone response around loaded titanium dental implants: A literature review. J. Appl. Biomater. Biomech. 2005, 3, 135–140. [Google Scholar]
- Geraets, W.G.; Van Der Stelt, P.F. Fractal Properties of Bone. Dentomaxillofac Radiol. 2000, 29, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Perrotti, V.; Iezzi, G.; De Sanctis, A.; Pasculli, A.; Piattelli, A.; Aprile, G. Correlation Between Bone Density and Fractal Dimension: A Pilot Study. Nonlinear Phenom. Complex Syst. 2020, 23, 130–132. [Google Scholar] [CrossRef]
- Hsu, J.-T.; Wang, S.-P.; Huang, H.-L.; Chen, Y.-J.; Wu, J.; Tsai, M.-T. The Assessment of Trabecular Bone Parameters and Cortical Bone Strength: A Comparison of Micro-CT and Dental Cone-Beam CT. J. Biomech. 2013, 46, 2611–2618. [Google Scholar] [CrossRef]
- Van Dessel, J.; Huang, Y.; Depypere, M.; Rubira-Bullen, I.; Maes, F.; Jacobs, R. A Comparative Evaluation of Cone Beam CT and Micro-CT on Trabecular Bone Structures in the Human Mandible. Dentomaxillofacial Radiol. 2013, 42, 20130145. [Google Scholar] [CrossRef]
- Ibrahim, N.; Parsa, A.; Hassan, B.; Van Der Stelt, P.; Aartman, I.H.A.; Wismeijer, D. The Effect of Scan Parameters on Cone Beam CT Trabecular Bone Microstructural Measurements of the Human Mandible. Dentomaxillofacial Radiol. 2013, 42, 20130206. [Google Scholar] [CrossRef]
- Pauwels, R.; Silkosessak, O.; Jacobs, R.; Bogaerts, R.; Bosmans, H.; Panmekiate, S. A Pragmatic Approach to Determine the Optimal kVp in Cone Beam CT: Balancing Contrast-to-Noise Ratio and Radiation Dose. Dentomaxillofacial Radiol. 2014, 43, 20140059. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, R.; Beinsberger, J.; Stamatakis, H.; Tsiklakis, K.; Walker, A.; Bosmans, H.; Bogaerts, R.; Jacobs, R.; Horner, K. Comparison of Spatial and Contrast Resolution for Cone-Beam Computed Tomography Scanners. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 127–135. [Google Scholar] [CrossRef]
- Pauwels, R.; Araki, K.; Siewerdsen, J.H.; Thongvigitmanee, S.S. Technical Aspects of Dental CBCT: State of the Art. Dentomaxillofacial Radiol. 2015, 44, 20140224. [Google Scholar] [CrossRef] [PubMed]
- Sindeaux, R.; Figueiredo, P.T.d.S.; de Melo, N.S.; Guimarães, A.T.B.; Lazarte, L.; Pereira, F.B.; de Paula, A.P.; Leite, A.F. Fractal Dimension and Mandibular Cortical Width in Normal and Osteoporotic Men and Women. Maturitas 2014, 77, 142–148. [Google Scholar] [CrossRef]
- Alman, A.C.; Johnson, L.R.; Calverley, D.C.; Grunwald, G.K.; Lezotte, D.C.; Hokanson, J.E. Diagnostic Capabilities of Fractal Dimension and Mandibular Cortical Width to Identify Men and Women with Decreased Bone Mineral Density. Osteoporos. Int. 2011, 23, 1631–1636. [Google Scholar] [CrossRef]
- Franciotti, R.; Moharrami, M.; Quaranta, A.; Bizzoca, M.E.; Piattelli, A.; Aprile, G.; Perrotti, V. Use of Fractal Analysis in Dental Images for Osteoporosis Detection: A Systematic Review and Meta-Analysis. Osteoporos. Int. 2021, 32, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Bachtler, R.; Walter, C.; Schulze, R.K.W. Fractal Dimension in CBCT Images as Predictor for MRONJ: A Retrospective Cohort Study. Clin. Oral Investig. 2020, 25, 2113–2118. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.; Chen, C.; Leroux, B.; Lee, P.; Hollender, L.; Schubert, M. Fractal Dimension Evaluation of Cone Beam Computed Tomography in Patients with Bisphosphonate-Associated Osteonecrosis. Dentomaxillofacial Radiol. 2011, 40, 501–505. [Google Scholar] [CrossRef]
- Kato, C.d.N.A.d.O.; Barra, S.G.; Abreu, L.G.; Machado, V.C.; Pinheiro, J.d.J.V.; Henriques, J.A.S.; Castro, W.H.; Brasileiro, C.B.; Mesquita, R.A. Fractal Analysis of Fibrous Dysplasia and Ossifying Fibroma in 2D and 3D CBCT Images. J. Oral Maxillofac. Surgery, Med. Pathol. 2022, 34, 791–799. [Google Scholar] [CrossRef]
Site | Group | N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum | p Value in Comparison to Group 1 | p Value in Comparison to Group 2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||||||
Site 1 [RM] | 1 | 10 | 1.166 | 0.029 | 0.009 | 1.145 | 1.187 | 1.122 | 1.206 | - | 0.975 |
2 | 10 | 1.136 | 0.027 | 0.009 | 1.116 | 1.155 | 1.104 | 1.193 | 0.975 | - | |
3 | 10 | 1.133 | 0.059 | 0.019 | 1.090 | 1.175 | 1.041 | 1.222 | 0.959 | 1.000 | |
4 | 10 | 1.140 | 0.060 | 0.019 | 1.097 | 1.183 | 1.039 | 1.218 | 0.989 | 1.000 | |
5 | 10 | 1.156 | 0.047 | 0.015 | 1.123 | 1.190 | 1.071 | 1.215 | 1.000 | 0.997 | |
6 | 10 | 1.139 | 0.039 | 0.012 | 1.111 | 1.167 | 1.088 | 1.188 | 0.988 | 1.000 | |
7 | 10 | 1.044 | 0.137 | 0.043 | 0.946 | 1.142 | 0.785 | 1.241 | 0.005 | 0.082 | |
8 | 10 | 1.109 | 0.087 | 0.027 | 1.047 | 1.171 | 0.943 | 1.238 | 0.604 | 0.990 | |
Total | 80 | 1.128 | 0.075 | 0.008 | 1.111 | 1.145 | 0.785 | 1.241 |
Site | Group | N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum | p Value in Comparison to Group 1 | p Value in Comparison to Group 2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||||||
Site 2 RPM | 1 | 10 | 1.153 | 0.025 | 0.008 | 1.135 | 1.171 | 1.116 | 1.185 | - | 1.000 |
2 | 10 | 1.136 | 0.025 | 0.008 | 1.118 | 1.154 | 1.093 | 1.161 | 1.000 | - | |
3 | 10 | 1.128 | 0.084 | 0.027 | 1.068 | 1.189 | 0.964 | 1.237 | 0.996 | 1.000 | |
4 | 10 | 1.170 | 0.022 | 0.007 | 1.153 | 1.186 | 1.142 | 1.208 | 1.000 | 0.976 | |
5 | 10 | 1.008 | 0.077 | 0.024 | 0.953 | 1.063 | 0.845 | 1.136 | 0.002 | 0.009 | |
6 | 10 | 1.008 | 0.103 | 0.033 | 0.934 | 1.082 | 0.792 | 1.167 | 0.002 | 0.009 | |
7 | 10 | 1.085 | 0.092 | 0.029 | 1.019 | 1.151 | 0.950 | 1.197 | 0.505 | 0.818 | |
8 | 10 | 0.994 | 0.115 | 0.036 | 0.912 | 1.077 | 0.823 | 1.199 | <0.001 | 0.002 | |
Total | 80 | 1.085 | 0.100 | 0.011 | 1.063 | 1.107 | 0.792 | 1.237 |
Site | Group | N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum | p Value in Comparison to Group 1 | p Value in Comparison to Group 2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||||||
Site 3 Anterior | 1 | 10 | 1.099 | 0.023 | 0.007 | 1.082 | 1.115 | 1.055 | 1.127 | - | 1.000 |
2 | 10 | 1.092 | 0.031 | 0.010 | 1.070 | 1.115 | 1.039 | 1.140 | 1.000 | - | |
3 | 10 | 1.109 | 0.030 | 0.009 | 1.088 | 1.130 | 1.067 | 1.149 | 1.000 | 0.992 | |
4 | 10 | 1.113 | 0.022 | 0.007 | 1.097 | 1.129 | 1.084 | 1.146 | 0.997 | 0.975 | |
5 | 10 | 1.059 | 0.067 | 0.021 | 1.011 | 1.107 | 0.959 | 1.162 | 0.538 | 0.734 | |
6 | 10 | 1.044 | 0.063 | 0.020 | 0.999 | 1.089 | 0.924 | 1.105 | 0.152 | 0.277 | |
7 | 10 | 1.003 | 0.064 | 0.020 | 0.957 | 1.049 | 0.892 | 1.097 | <0.001 | 0.001 | |
8 | 10 | 1.051 | 0.036 | 0.011 | 1.025 | 1.076 | 1.000 | 1.116 | 0.287 | 0.464 | |
Total | 80 | 1.071 | 0.057 | 0.006 | 1.058 | 1.084 | 0.892 | 1.162 |
Site | Group | N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum | p Value in Comparison to Group 1 | p Value in Comparison to Group 2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||||||
Site 4 LPM | 1 | 10 | 1.045 | 0.045 | 0.014 | 1.012 | 1.077 | 0.976 | 1.095 | - | 1.000 |
2 | 10 | 1.054 | 0.051 | 0.016 | 1.018 | 1.090 | 0.977 | 1.122 | 1.000 | - | |
3 | 10 | 1.132 | 0.065 | 0.021 | 1.085 | 1.179 | 0.993 | 1.214 | 0.086 | 0.176 | |
4 | 10 | 1.126 | 0.100 | 0.032 | 1.054 | 1.198 | 0.989 | 1.259 | 0.138 | 0.263 | |
5 | 10 | 1.133 | 0.047 | 0.015 | 1.099 | 1.166 | 1.069 | 1.223 | 0.083 | 0.170 | |
6 | 10 | 1.159 | 0.044 | 0.014 | 1.128 | 1.191 | 1.073 | 1.215 | 0.007 | 0.017 | |
7 | 10 | 1.027 | 0.063 | 0.020 | 0.982 | 1.072 | 0.882 | 1.104 | 0.999 | 0.984 | |
8 | 10 | 1.100 | 0.096 | 0.030 | 1.031 | 1.168 | 0.938 | 1.209 | 0.604 | 0.799 | |
Total | 80 | 1.097 | 0.079 | 0.009 | 1.079 | 1.114 | 0.882 | 1.259 |
Site | Group | N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum | p Value in Comparison to Group 1 | p Value in Comparison to Group 2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||||||
Site 5 LM | 1 | 10 | 1.045 | 0.162 | 0.051 | 0.929 | 1.161 | 0.882 | 1.292 | - | 0.040 |
2 | 10 | 1.175 | 0.125 | 0.040 | 1.086 | 1.265 | 0.971 | 1.269 | 0.040 | - | |
3 | 10 | 1.026 | 0.094 | 0.030 | 0.959 | 1.093 | 0.949 | 1.265 | 1.000 | 0.010 | |
4 | 10 | 0.993 | 0.040 | 0.013 | 0.965 | 1.022 | 0.936 | 1.050 | 0.908 | 0.001 | |
5 | 10 | 0.986 | 0.048 | 0.015 | 0.952 | 1.021 | 0.920 | 1.052 | 0.838 | <0.001 | |
6 | 10 | 1.003 | 0.063 | 0.020 | 0.958 | 1.048 | 0.896 | 1.086 | 0.968 | 0.002 | |
7 | 10 | 1.019 | 0.068 | 0.021 | 0.970 | 1.067 | 0.928 | 1.118 | 0.998 | 0.006 | |
8 | 10 | 0.984 | 0.056 | 0.018 | 0.945 | 1.024 | 0.917 | 1.051 | 0.813 | <0.001 | |
Total | 80 | 1.029 | 0.105 | 0.012 | 1.006 | 1.052 | 0.882 | 1.292 |
Group | N | Mean | Std. Deviation | Std. Error | 95% Confidence Interval for Mean | Minimum | Maximum | p Value in Comparison to Group 1 | p Value in Comparison to Group 2 | |
---|---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||||
1 | 10 | 1.0604 | 0.15871 | 0.05019 | 0.9469 | 1.1739 | 0.86 | 1.29 | - | 0.997 |
2 | 10 | 1.0527 | 0.02951 | 0.00933 | 1.0316 | 1.0738 | 1.01 | 1.09 | 0.997 | - |
3 | 10 | 0.9808 | 0.03282 | 0.01038 | 0.9573 | 1.0043 | 0.94 | 1.04 | 0.187 | 0.265 |
4 | 10 | 0.9196 | 0.05350 | 0.01692 | 0.8813 | 0.9579 | 0.83 | 1.01 | 0.005 | 0.008 |
Total | 80 | 1.0034 | 0.10154 | 0.01605 | 0.9709 | 1.0358 | 0.83 | 1.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khubrani, Y.H.; Geha, H.; Katkar, R.A.; Maghsoodi-Zahedi, T.; Moore, W.; Abdelkarim, A.Z. Efficacy of the CALM® Algorithm in Reducing Motion-Induced Artifacts in CBCT Imaging: A Fractal Dimension Analysis of Trabecular Bone. Dent. J. 2024, 12, 262. https://doi.org/10.3390/dj12080262
Khubrani YH, Geha H, Katkar RA, Maghsoodi-Zahedi T, Moore W, Abdelkarim AZ. Efficacy of the CALM® Algorithm in Reducing Motion-Induced Artifacts in CBCT Imaging: A Fractal Dimension Analysis of Trabecular Bone. Dentistry Journal. 2024; 12(8):262. https://doi.org/10.3390/dj12080262
Chicago/Turabian StyleKhubrani, Yahia H., Hassem Geha, Rujuta A. Katkar, Taraneh Maghsoodi-Zahedi, William Moore, and Ahmed Z. Abdelkarim. 2024. "Efficacy of the CALM® Algorithm in Reducing Motion-Induced Artifacts in CBCT Imaging: A Fractal Dimension Analysis of Trabecular Bone" Dentistry Journal 12, no. 8: 262. https://doi.org/10.3390/dj12080262
APA StyleKhubrani, Y. H., Geha, H., Katkar, R. A., Maghsoodi-Zahedi, T., Moore, W., & Abdelkarim, A. Z. (2024). Efficacy of the CALM® Algorithm in Reducing Motion-Induced Artifacts in CBCT Imaging: A Fractal Dimension Analysis of Trabecular Bone. Dentistry Journal, 12(8), 262. https://doi.org/10.3390/dj12080262