A Potential Intracanal Medicament, 2-Hydroxyisocaproic Acid (HICA): Cytotoxicity, Genotoxicity, and Its Effect on SCAP Differentiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Reagents
2.2. Kinetic Cytotoxicity Assay
2.3. Cell Viability Assay
2.4. Immunofluorescence
2.5. Cell Culture for Differentiation
2.6. Alkaline Phosphatase Activity
2.7. Alizarin Red Staining
2.8. Gene Expression of Osteogenic Markers
2.9. Statistical Analysis
3. Results
3.1. HICA Biocompatibility to SCAP
3.2. HICA Genotoxicity to SCAP
3.3. HICA Effect on SCAP Differentiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hargreaves, K.M.; Diogenes, A.; Teixeira, F.B. Treatment options: Biological basis of regenerative endodontic procedures. Pediatr. Dent. 2013, 35, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Yang, M.; Yue, L.; Huang, D.; Zhou, X.; Wang, X.; Zhang, Q.; Qiu, L.; Huang, Z.; Wang, H.; et al. Expert consensus on regenerative endodontic procedures. Int. J. Oral. Sci. 2022, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- American Association of Endodontists. AAE Clinical Considerations for a Regenerative Procedure. Available online: https://www.aae.org/specialty/wp-content/uploads/sites/2/2021/08/ClinicalConsiderationsApprovedByREC062921.pdf (accessed on 18 May 2021).
- Fouad, A.F.; Verma, P. Healing after regenerative procedures with and without pulpal infection. J. Endod. 2014, 40 (Suppl. S4), S58–S64. [Google Scholar] [CrossRef]
- Huang, G.T.; Sonoyama, W.; Liu, Y.; Liu, H.; Wang, S.; Shi, S. The hidden treasure in apical papilla: The potential role in pulp/dentin regeneration and bioroot engineering. J. Endod. 2008, 34, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Fan, W.; Deng, Q.; He, H.; Huang, F. Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy. Biomed. Res. Int. 2019, 2019, 6104738. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, Y.; He, J. Stem Cells from the Apical Papilla (SCAPs): Past, Present, Prospects, and Challenges. Biomedicines 2023, 11, 2047. [Google Scholar] [CrossRef]
- Althumairy, R.I.; Teixeira, F.B.; Diogenes, A. Effect of dentin conditioning with intracanal medicaments on survival of stem cells of apical papilla. J. Endod. 2014, 40, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Ruparel, N.B.; Teixeira, F.B.; Ferraz, C.C.; Diogenes, A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J. Endod. 2012, 38, 1372–1375. [Google Scholar] [CrossRef]
- Raddall, G.; Mello, I.; Leung, B.M. Effects of Intracanal Antimicrobials on Viability and Differentiation of Stem Cells From the Apical Papilla: An In Vitro Study. J. Endod. 2022, 48, 880–886. [Google Scholar] [CrossRef]
- Bhandi, S.; Patil, S.; Boreak, N.; Chohan, H.; AbuMelha, A.S.; Alkahtany, M.F.; Almadi, K.H.; Vinothkumar, T.S.; Raj, A.T.; Testarelli, L. Effect of Different Intracanal Medicaments on the Viability and Survival of Dental Pulp Stem Cells. J. Pers. Med. 2022, 12, 575. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Ribeiro, J.S.; Münchow, E.A.; Ferreira Bordini, E.A.; de Oliveira da Rosa, W.L.; Bottino, M.C. Antimicrobial Therapeutics in Regenerative Endodontics: A Scoping Review. J. Endod. 2020, 46 (Suppl. S9), S115–S127. [Google Scholar] [CrossRef] [PubMed]
- Cunha Neto, M.A.D.; Coêlho, J.A.; Pinto, K.P.; Cuellar, M.R.C.; Marcucci, M.C.; Silva, E.J.N.L.; Andrade, F.B.; Sassone, L.M. Antibacterial Efficacy of Triple Antibiotic Medication With Macrogol (3Mix-MP), Traditional Triple Antibiotic Paste, Calcium Hydroxide, and Ethanol Extract of Propolis: An Intratubular Dentin Ex Vivo Confocal Laser Scanning Microscopic Study. J. Endod. 2021, 47, 1609–1616. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaher, A.; Wallace, J.; Agarwal, S.; Bretz, W.; Baugh, D. Effect of propolis on human fibroblasts from the pulp and periodontal ligament. J. Endod. 2004, 30, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Lillygrace, E.; Kethineni, B.; Puppala, R.; Raichurkar, H.K.; Ambati, S.; Saikiran, K.V. Antimicrobial Efficacy of Triple Antibiotic Paste and Propolis as an Intracanal Medicament in Young Permanent Teeth: An In Vivo Study. Int. J. Clin. Pediatr. Dent. 2021, 14, 243–248. [Google Scholar] [CrossRef] [PubMed]
- El-Tayeb, M.M.; Abu-Seida, A.M.; El Ashry, S.H.; El-Hady, S.A. Evaluation of antibacterial activity of propolis on regenerative potential of necrotic immature permanent teeth in dogs. BMC Oral Health 2019, 19, 174. [Google Scholar] [CrossRef] [PubMed]
- Shamma, B.M.; Kurdi, S.A.; Rajab, A.; Arrag, E.A. Evaluation of antibacterial effects of different intracanal medicaments on Enterococcus faecalis in primary teeth: An in vitro study. Clin. Exp. Dent. Res. 2023, 9, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Uzel, A. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol. Res. 2005, 160, 189–195. [Google Scholar] [CrossRef]
- Uter, W.; Sorkun, K.; Önçağ, Ö.; Çoğulu, D.; Gençay, Ö.; Sali˙h, B. Trends and current spectrum of contact allergy in Central Europe: Results of the Information Network of Departments of Dermatology (IVDK) 2007–2018. Br. J. Dermatol. 2020, 183, 857–865. [Google Scholar] [CrossRef]
- Rahul, M.; Tewari, N.; Mathur, V.; Atif, M.; Bansal, K.; Agrawal, S.; Mir, R. In-vitro Evaluation for Effects of Intracanal Medicaments on Viability, Proliferation, and Differentiation of Stem Cells From Apical Papilla—A Systematic Review. Eur. Endod. J. 2022, 7, 167–177. [Google Scholar] [CrossRef]
- Mero, A.A.; Ojala, T.; Hulmi, J.J.; Puurtinen, R.; Karila, T.A.; Seppälä, T. Effects of alfa-hydroxy-isocaproic acid on body composition, DOMS and performance in athletes. J. Int. Soc. Sports Nutr. 2010, 7, 1. [Google Scholar] [CrossRef]
- Hietala, P.K.; Westermarck, H.W.; Jaarma, M. Identification of antimicrobial alpha-hydroxyacids in Lactobacillus plantarum-fermented animal protein. Nutr. Metab. 1979, 23, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Sakko, M.; Tjäderhane, L.; Sorsa, T.; Hietala, P.; Järvinen, A.; Bowyer, P.; Rautemaa, R. 2-Hydroxyisocaproic acid (HICA): A new potential topical antibacterial agent. Int. J. Antimicrob. Agents 2012, 39, 539–540. [Google Scholar] [CrossRef] [PubMed]
- Sakko, M.; Tjäderhane, L.; Sorsa, T.; Hietala, P.; Rautemaa, R. 2-Hydroxyisocaproic acid is bactericidal in human dental root canals ex vivo. Int. Endod. J. 2017, 50, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Sakko, M.; Tjäderhane, L.; Sorsa, T.; Hietala, P.; Rautemaa, R. Antimicrobial 2-hydroxyisocaproic acid and chlorhexidine resist inactivation by dentine. Int. Endod. J. 2016, 49, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Sakko, M.; Moore, C.; Novak-Frazer, L.; Rautemaa, V.; Sorsa, T.; Hietala, P.; Järvinen, A.; Bowyer, P.; Tjäderhane, L.; Rautemaa, R. 2-hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species. Mycoses 2014, 57, 214–221. [Google Scholar] [CrossRef]
- Leelapornpisid, W.; Novak-Frazer, L.; Qualtrough, A.; Rautemaa-Richardson, R. Effectiveness of D,L-2-hydroxyisocaproic acid (HICA) and alpha-mangostin against endodontopathogenic microorganisms in a multispecies bacterial-fungal biofilm in an ex vivo tooth model. Int. Endod. J. 2021, 54, 2243–2255. [Google Scholar] [CrossRef]
- Sakko, M.; Rautemaa-Richardson, R.; Sakko, S.; Richardson, M.; Sorsa, T. Antibacterial Activity of 2-Hydroxyisocaproic Acid (HICA) Against Obligate Anaerobic Bacterial Species Associated With Periodontal Disease. Microbiol. Insights 2021, 14, 11786361211050086. [Google Scholar] [CrossRef]
- Pahalagedara, A.S.N.W.; Flint, S.; Palmer, J.; Brightwell, G.; Gupta, T.B. Antibacterial efficacy and possible mechanism of action of 2-hydroxyisocaproic acid (HICA). PLoS ONE 2022, 17, e0266406. [Google Scholar] [CrossRef]
- Selis, D.; Pande, Y.; Smoczer, C.; Wheater, M.; Alhabeil, J.; Paurazas, S.; Askar, M. Cytotoxicity and Genotoxicity of a New Intracanal Medicament, 2-hydroxyisocaproic Acid-An In Vitro Study. J. Endod. 2019, 45, 578–583. [Google Scholar] [CrossRef]
- Ruparel, N.B.; de Almeida, J.F.; Henry, M.A.; Diogenes, A. Characterization of a stem cell of apical papilla cell line: Effect of passage on cellular phenotype. J. Endod. 2013, 39, 357–363. [Google Scholar] [CrossRef]
- Andreasen, J.O.; Farik, B.; Munksgaard, E.C. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent. Traumatol. 2002, 18, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, H.K.; Sirén, E.K.; Waltimo, T.M.; Ørstavik, D.; Haapasalo, M.P. Inactivation of local root canal medicaments by dentine: An in vitro study. Int. Endod. J. 2000, 33, 126–131. [Google Scholar] [CrossRef]
- Fouad, A.F. Microbiological Aspects of Traumatic Injuries. J. Endod. 2019, 45 (Suppl. S12), S39–S48. [Google Scholar] [CrossRef] [PubMed]
- Popp, H.D.; Brendel, S.; Hofmann, W.K.; Fabarius, A. Immunofluorescence Microscopy of γH2AX and 53BP1 for Analyzing the Formation and Repair of DNA Double-strand Breaks. J. Vis. Exp. 2017, 129, 56617. [Google Scholar]
- Ward, I.M.; Minn, K.; Jorda, K.G.; Chen, J. Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J. Biol. Chem. 2003, 278, 19579–19582. [Google Scholar] [CrossRef] [PubMed]
- Löbrich, M.; Löbrich, M.; Shibata, A.; Beucher, A.; Fisher, A.; Ensminger, M.; Goodarzi, A.A.; Barton, O.; Jeggo, P.A. gammaH2AX foci analysis for monitoring DNA double-strand break repair: Strengths, limitations and optimization. Cell Cycle 2010, 9, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Malek, M.; Sigurdsson, A.; Lin, L.M.; Kahler, B. Regenerative endodontics: A comprehensive review. Int. Endod. J. 2018, 51, 1367–1388. [Google Scholar] [CrossRef]
- Shaik, I.; Tulli, M.; Unnam, P.; Karunakaran, S.; Vaddi, D.S.; Jabeen, R.; Tiwari, R.V.C. Regenerative Endodontic Therapy in the Management of Nonvital Immature Permanent teeth: A Systematic Review and Meta-analysis. J. Pharm. Bioallied Sci. 2021, 13 (Suppl. S1), S36–S42. [Google Scholar] [CrossRef]
- Stein, G.S.; Lian, J.B.; Owen, T.A. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J. 1990, 4, 3111–3123. [Google Scholar] [CrossRef]
- Cormier, C. Markers of bone metabolism. Curr. Opin. Rheumatol. 1995, 7, 243–248. [Google Scholar] [CrossRef]
- Stein, G.S.; Lian, J.B.; van Wijnen, A.J.; Stein, J.L.; Montecino, M.; Javed, A.; Zaidi, S.K.; Young, D.W.; Choi, J.Y.; Pockwinse, S.M. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 2004, 23, 4315–4329. [Google Scholar] [CrossRef] [PubMed]
- Spector, J.A.; Mehrara, B.J.; Greenwald, J.A.; Saadeh, P.B.; Steinbrech, D.S.; Bouletreau, P.J.; Smith, L.P.; Longaker, M.T. Osteoblast expression of vascular endothelial growth factor is modulated by the extracellular microenvironment. Am. J. Physiol. Cell Physiol. 2001, 280, C72–C80. [Google Scholar] [CrossRef] [PubMed]
- Lertchirakarn, V.; Aguilar, P. Effects of Lipopolysaccharide on the Proliferation and Osteogenic Differentiation of Stem Cells from the Apical Papilla. J. Endod. 2017, 43, 1835–1840. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Alamoudi, A.; Zidane, B.; Alzahrani, K.J.; Alzahrani, F.M.; Banjer, H.J.; Reda, R.; Balaji, T.M.; Bhandi, S.; Raj, A.T.; et al. Dose-Dependent Effects of Melatonin on the Viability, Proliferation, and Differentiation of Dental Pulp Stem Cells (DPSCs). J. Pers. Med. 2022, 12, 1620. [Google Scholar] [CrossRef]
Gene | Forward Primer | Reverse Primer |
---|---|---|
DSPP1 | GGGACACAGGAAAAGCAGAA | TGCTCCATTCCCACTAGGAC |
BSP1 | ATGGAGAGGACGCCACGCCT | GGTGCCCTTGCCCTGCCTTC |
OCN | GACTGTGACGAGTTGGCTGA | AAGAGGAAAGAAGGGTGCCT |
RUNX2 | CCCGTGGCCTTCAAGGT | CGTTACCCGCCATGACAGTA |
GAPDH | GAAGGTGAAGGTCGGAGT | GAAGATGGTGATGGGATTTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smoczer, C.; Park, Y.K.; Herrington, J.B.; Askar, M.A.; Plecha, S.; Krukonis, E.; Paurazas, S.B. A Potential Intracanal Medicament, 2-Hydroxyisocaproic Acid (HICA): Cytotoxicity, Genotoxicity, and Its Effect on SCAP Differentiation. Dent. J. 2023, 11, 270. https://doi.org/10.3390/dj11120270
Smoczer C, Park YK, Herrington JB, Askar MA, Plecha S, Krukonis E, Paurazas SB. A Potential Intracanal Medicament, 2-Hydroxyisocaproic Acid (HICA): Cytotoxicity, Genotoxicity, and Its Effect on SCAP Differentiation. Dentistry Journal. 2023; 11(12):270. https://doi.org/10.3390/dj11120270
Chicago/Turabian StyleSmoczer, Cristine, Yun K. Park, James B. Herrington, Mazin A. Askar, Sarah Plecha, Eric Krukonis, and Susan B. Paurazas. 2023. "A Potential Intracanal Medicament, 2-Hydroxyisocaproic Acid (HICA): Cytotoxicity, Genotoxicity, and Its Effect on SCAP Differentiation" Dentistry Journal 11, no. 12: 270. https://doi.org/10.3390/dj11120270
APA StyleSmoczer, C., Park, Y. K., Herrington, J. B., Askar, M. A., Plecha, S., Krukonis, E., & Paurazas, S. B. (2023). A Potential Intracanal Medicament, 2-Hydroxyisocaproic Acid (HICA): Cytotoxicity, Genotoxicity, and Its Effect on SCAP Differentiation. Dentistry Journal, 11(12), 270. https://doi.org/10.3390/dj11120270