Structural Conformation Comparison of Different Clear Aligner Systems: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vickers Indenter
2.2. Fourier Transform Infrared Spectroscopy
2.3. Scanning Electron Microscopy Combined with an Energy-Dispersive X-ray Microanalysis
Statistical Analysis
3. Results
3.1. Micro-Hardness
3.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.3. SEM and EDX
4. Discussion
4.1. Micro-Hardness
4.2. FTIR Spectroscopy
4.3. SEM and EDX
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iliadi, A.; Koletsi, D.; Papageorgiou, S.N.; Eliades, T. Safety considerations for thermoplastic-type appliances used as orthodontic aligners or retainers. A systematic review and meta-analysis of clinical and in-vitro research. Materials 2020, 13, 1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, L.; Kaur, H.; Fagundes, N.C.F.; Romanyk, D.; Major, P.; Flores Mir, C. Effectiveness of clear aligner therapy for orthodontic treatment: A systematic review. Orthod. Craniofacial Res. 2020, 23, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Nucera, R.; Dolci, C.; Bellocchio, A.M.; Costa, S.; Barbera, S.; Rustico, L.; Farronato, M.; Militi, A.; Portelli, M. Effects of Composite Attachments on Orthodontic Clear Aligners Therapy: A Systematic Review. Materials 2022, 15, 533. [Google Scholar] [CrossRef] [PubMed]
- Align-Technology. Invisalign® Clear Aligners. Available online: https://www.invisalign.com/the-invisalign-difference/smarttrack-aligner-material (accessed on 14 July 2021).
- Eon-Holdings. Eon Clear Aligners®. Available online: https://eonaligner.com (accessed on 14 July 2021).
- 3M. Clarity® Aligners. Available online: https://www.3m.com/3M/en_US/orthodontics-us/featured-products/clarity-eos/ (accessed on 14 July 2021).
- Dentsply-Sirona. SureSmile® Clear Aligners. Available online: https://www.dentsplysirona.com/en/explore/orthodontics/suresmile-aligner.html (accessed on 14 July 2021).
- Eliades, T.; Eliades, G.; Watts, D.C. Structural conformation of in vitro and in vivo aged orthodontic elastomeric modules. Eur. J. Orthod. 1999, 21, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.; Eliades, G.; Zinelis, S.; Eliades, T.; Bradley, T.G. Structural conformation and leaching from in vitro aged and retrieved Invisalign appliances. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 725–728. [Google Scholar] [CrossRef]
- Gracco, A.; Mazzoli, A.; Favoni, O.; Conti, C.; Ferraris, P.; Tosi, G.; Guarneri, M.P. Short-term chemical and physical changes in Invisalign appliances. Aust. Orthod. J. 2009, 25, 34–40. [Google Scholar]
- Thavarajah, R.; Thennukonda, R.A. Analysis of adverse events with use of orthodontic sequential aligners as reported in the manufacturer and user facility device experience database. Indian J. Dent. Res. 2015, 26, 582–587. [Google Scholar] [CrossRef]
- Eliades, T.; Bourauel, C. Intraoral aging of orthodontic materials: The picture we miss and its clinical relevance. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 403–412. [Google Scholar] [CrossRef]
- Comba, A.; Scotti, N.; Maravić, T.; Mazzoni, A.; Carossa, M.; Breschi, L.; Cadenaro, M. Vickers Hardness and Shrinkage Stress Evaluation of Low and High Viscosity Bulk-Fill Resin Composite. Polymers 2020, 12, 1477. [Google Scholar] [CrossRef]
- Azevedo, A.; Machado, A.L.; Vergani, C.E.; Giampaolo, E.T.; Pavarina, A.C.U. Hardness of denture base and hard chair-side reline acrylic resins. J. Appl. Oral Sci. 2005, 13, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Bucci, R.; Rongo, R.; Levate, C.; Michelotti, A.; Barone, S.; Razionale, A.V.; D’Anto, V. Thickness of orthodontic clear aligners after thermoforming and after 10 days of intraoral exposure: A prospective clinical study. Prog. Orthod. 2019, 20, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pytko-Polonczyk, J.; Jakubik, A.; Przeklasa-Bierowiec1, A.; Muszynska, B. Artificial Saliva and its Use in Biological Experiments. J. Physiol. Pharmacol. 2017, 68, 807–813. [Google Scholar]
- Condo, R.; Mampieri, G.; Giancotti, A.; Cerroni, L.; Pasquantonio, G.; Divizia, A.; Convertino, A.; Mecheri, B.; Maiolo, L. SEM characterization and ageing analysis on two generation of invisible aligners. BMC Oral Health 2021, 21, 316. [Google Scholar] [CrossRef] [PubMed]
- Low, I.M.; Shi, C. Vickers indentation responses of epoxy polymers. J. Mater. Sci. Lett. 1998, 17, 1181–1183. [Google Scholar] [CrossRef]
- Kohda, N.; Iijima, M.; Muguruma, T.; Brantley, W.A.; Ahluwalia, K.S.; Mizoguchi, I. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances. Angle Orthod. 2013, 83, 476–483. [Google Scholar] [CrossRef]
- Alexandropoulos, A.; Jabbari, Y.S.A.; Zinelis, S.; Eliades, T. Chemical and mechanical characteristics of contemporary thermoplastic orthodontic materials. Aust. Soc. Orthod. 2015, 31, 165–170. [Google Scholar] [CrossRef]
- Dalaie, K.; Fatemi, S.M.; Ghaffari, S. Dynamic mechanical and thermal properties of clear aligners after thermoforming and aging. Prog. Orthod. 2021, 22, 15. [Google Scholar] [CrossRef]
- Bradley, T.; Teske, L.; Eliades, G.; Zinelis, S.; Eliades, T. Do the mechanical and chemical properties of Invisalign appliances change after use? A retrieval analysis. Eur. J. Orthod. 2016, 38, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.L.; Sun, W.T.; Liao, W.; Lu, W.X.; Li, Q.W.; Jeong, Y.; Liu, J.; Zhao, Z.H. Colour stabilities of three types of orthodontic clear aligners exposed to staining agents. Int. J. Oral Sci. 2016, 8, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Daniele, V.; Macera, L.; Taglieri, G.; Spera, L.; Marzo, G.; Quinzi, V. Color Stability, Chemico-Physical and Optical Features of the Most Common PETG and PU Based Orthodontic Aligners for Clear Aligner Therapy. Polymers 2021, 14, 14. [Google Scholar] [CrossRef]
- Sifakakis, I.; Zinelis, S.; Eliades, T. Aligners for orthodontic applications. In Orthodontic Applications of Biomaterials a Clinical Guide; Eliades, T., Brantley, W.A., Eds.; Biomaterials; Matthew Deans: Richmond, VA, USA, 2017; pp. 1–293. [Google Scholar]
- Jirau-Colon, H.; Gonzalez-Parrilla, L.; Martinez-Jimenez, J.; Adam, W.; Jimenez-Velez, B. Rethinking the Dental Amalgam Dilemma: An Integrated Toxicological Approach. Int. J. Environ. Res. Public Health 2019, 16, 1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjorklund, G.; Hilt, B.; Dadar, M.; Lindh, U.; Aaseth, J. Neurotoxic effects of mercury exposure in dental personnel. Basic Clin. Pharmacol. Toxicol. 2019, 124, 568–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, Y.; Aoki, H.; Miyasaka, T.; Aoyagi, Y.; Miura, D.; Shinya, A. Effects of Removal Conditions on Mercury Amount Remaining in the Oral Cavity and inside Drainage System after Removing Dental Amalgams. Int. J. Environ. Res. Public Health 2021, 18, 3135. [Google Scholar] [CrossRef] [PubMed]
System | Mean ± SD | F-Test | p-Value | 95% Confidence Interval | Multiple Comparisons (Post Hoc Tukey HSD) | ||||
---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | Invisalign® | Eon® | SureSmile® | Clarity® | ||||
Invisalign® | 5.163 ± 0.440 | 2.449 | 0.138 | 4.071 | 6.255 | 1 | 0.143 | 0.994 | 0.872 |
Eon® | 4.642 ± 0.188 | 4.176 | 5.108 | 0.143 | 1 | 0.200 | 0.382 | ||
SureSmile® | 5.111 ± 0.164 | 4.703 | 5.519 | 0.994 | 0.200 | 1 | 0.955 | ||
Clarity® | 5.003 ± 0.122 | 4.699 | 5.307 | 0.872 | 0.382 | 0.955 | 1 |
System | Element | Atom Shell (Location) | Element Weight in % |
---|---|---|---|
Invisalign® | Carbon | K | 39.52 |
Oxygen | 14.13 | ||
Nitrogen | 46.36 | ||
Eon® | Carbon | K | 61.54 |
Oxygen | 21.13 | ||
Fluorine | 0.02 | ||
Mercury | M | 17.31 | |
SureSmile® | Carbon | K | 72.78 |
Oxygen | 24.20 | ||
Fluorine | 0.36 | ||
Sodium | 1.75 | ||
Chlorine | 0.90 | ||
Clarity® | Carbon | K | 69.92 |
Oxygen | 30.08 |
System | Element | Element Weight in % | Chi-Square | p-Value |
---|---|---|---|---|
Invisalign® | C | 39.52 | 10.886 | 0.012 * |
Eon® | 61.54 | |||
SureSmile® | 72.78 | |||
Clarity® | 69.92 | |||
Invisalign® | O | 14.13 | 5.966 | 0.113 |
Eon® | 21.13 | |||
SureSmile® | 24.2 | |||
Clarity® | 30.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhendi, A.; Khounganian, R.; Ali, R.; Syed, S.A.; Almudhi, A. Structural Conformation Comparison of Different Clear Aligner Systems: An In Vitro Study. Dent. J. 2022, 10, 73. https://doi.org/10.3390/dj10050073
Alhendi A, Khounganian R, Ali R, Syed SA, Almudhi A. Structural Conformation Comparison of Different Clear Aligner Systems: An In Vitro Study. Dentistry Journal. 2022; 10(5):73. https://doi.org/10.3390/dj10050073
Chicago/Turabian StyleAlhendi, Aseel, Rita Khounganian, Raisuddin Ali, Saeed Ali Syed, and Abdullazez Almudhi. 2022. "Structural Conformation Comparison of Different Clear Aligner Systems: An In Vitro Study" Dentistry Journal 10, no. 5: 73. https://doi.org/10.3390/dj10050073
APA StyleAlhendi, A., Khounganian, R., Ali, R., Syed, S. A., & Almudhi, A. (2022). Structural Conformation Comparison of Different Clear Aligner Systems: An In Vitro Study. Dentistry Journal, 10(5), 73. https://doi.org/10.3390/dj10050073