Comparative Evaluation of Two Bracket Systems’ Bond Strength: Conventional and Self-Ligating
Abstract
:1. Introduction
2. Materials and Methods
- ASLB vs. PSLB;
- ASLB with CB;
- PSLB with CB.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carvalho, R.M.; Manso, A.P.; Geraldeli, S.; Tay, F.R.; Pashley, D.H. Durability of bonds and clinical success of adhesive restorations. Dent. Mater. 2012, 28, 72–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heintze, S.; Zimmerli, B. Relevance of in-vitro tests of adhesive and composite dental materials. A review in 3 parts. Part 2: Non-standardized tests of composite materials. Schweizer Monatsschrift für Zahnmedizin = Revue mensuelle suisse d’odonto-stomatologie = Rivista mensile svizzera di odontologia e stomatologia/SSO 2011, 121, 916–930. Available online: https://pubmed.ncbi.nlm.nih.gov/22025204/ (accessed on 28 June 2022).
- Söderholm, K.-J.M. Critical evaluation of adhesive test methods used in dentistry. J. Adhes. Sci. Technol. 2009, 23, 973–990. [Google Scholar] [CrossRef]
- Scribante, A.; Contreras-Bulnes, R.; Montasser, M.A.; Vallittu, P.K. Orthodontics: Bracket Materials, Adhesives Systems, and Their Bond Strength. BioMed Res. Int. 2016, 2016, 1329814. [Google Scholar] [CrossRef]
- Scribante, A.; Sfondrini, M.; Gatti, S.; Gandini, P. Disinclusion of unerupted teeth by mean of self-ligating brackets: Effect of blood contamination on shear bond strength. Med. Oral Patol. Oral Cir. Bucal 2013, 18, e162–e167. [Google Scholar] [CrossRef]
- Montasser, M.A. Effect of applying a sustained force during bonding orthodontic brackets on the adhesive layer and on shear bond strength. Eur. J. Orthod. 2011, 33, 402–406. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Gatti, S.; Scribante, A. Shear bond strength of self-ligating brackets. Eur. J. Orthod. 2011, 33, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Scribante, A.; Sfondrini, M.F.; Fraticelli, D.; Daina, P.; Tamagnone, A.; Gandini, P. The influence of no-primer adhesives and anchor pylons bracket bases on shear bond strength of orthodontic brackets. BioMed. Res. Int. 2013, 2013, 315023. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Contreras, R.; Scougall-Vilchis, R.J.; Contreras-Bulnes, R.; Sakagami, H.; Morales-Luckie, R.A.; Nakajima, H. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. J. Appl. Oral Sci. 2015, 23, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Lanteri, V.; Segù, M.; Doldi, J.; Butera, A. Pre-bonding prophylaxis and brackets detachment: An experimental comparison of different methods. Int. J. Clin. Dent. 2014, 7, 191–197. [Google Scholar]
- Pickett, K.L.; Sadowsky, P.L.; Jacobson, A.; Lacefield, W. Orthodontic in vivo bond strength: Comparison with in vitro results. Angle Orthod. 2001, 71, 141–148. [Google Scholar]
- Hassan, A. Shear bond strength of precoated orthodontic brackets: An in vivo study. Clin. Cosmet. Investig. Dent. 2010, 2, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Mheissen, S.; Iqbal, A.; Jafri, A.R.; Alam, M.K. Bracket Failure in Orthodontic Patients: The Incidence and the Influence of Different Factors. BioMed Res. Int. 2022, 2022, 5128870. [Google Scholar] [CrossRef]
- Sukhia, R.H.; Sukhia, H.R.; Azam, S.I.; Nuruddin, R.; Rizwan, A.; Jalal, S. Predicting the bracket bond failure rate in orthodontic patients: A retrospective cohort study. Int. Orthod. 2019, 17, 208–215. [Google Scholar] [CrossRef]
- Maizeray, R.; Wagner, D.; Lefebvre, F.; Lévy-Bénichou, H.; Bolender, Y. Is there any difference between conventional, passive and active self-ligating brackets? A systematic review and network meta-analysis. Int. Orthod. 2021, 19, 523–538. [Google Scholar] [CrossRef]
- Ludwig, B. Self-Ligating Brackets in Orthodontics: Current Concepts and Techniques; Thieme: Stuttgart, Germany, 2012. [Google Scholar]
- Bishara, S.E.; Soliman, M.M.A.; Oonsombat, C.; Laffoon, J.F.; Ajlouni, R. The effect of variation in mesh-base design on the shear bond strength of orthodontic brackets. Angle Orthod 2004, 74, 400–404. [Google Scholar] [PubMed]
- Sharma-Sayal, S.K.; Rossouw, P.E.; Kulkarni, G.V.; Titley, K.C. The influence of orthodontic bracket base design on shear bond strength. Am. J. Orthod. Dentofac. Orthop. 2003, 124, 74–82. [Google Scholar] [CrossRef]
- Reynolds, I.R. A review of direct orthodontic bonding. Br. J. Orthod. 1975, 2, 171–178. [Google Scholar] [CrossRef]
- Giannini, M. Ultimate tensile strength of tooth structures. Dent. Mater. 2004, 20, 322–329. [Google Scholar] [CrossRef]
- Bishara, S.E.; Gordan, V.V.; VonWald, L.; Olson, M.E. Effect of an acidic primer on shear bond strength of orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 1998, 114, 243–247. [Google Scholar] [CrossRef]
- Oesterle, L.J.; Shellhart, W.C.; Belanger, G.K. The use of bovine enamel in bonding studies. Am. J. Orthod. Dentofac. Orthop. 1998, 114, 514–519. [Google Scholar] [CrossRef]
- Soares, F.Z.M.; Follak, A.; da Rosa, L.S.; Montagner, A.F.; Lenzi, T.L.; Rocha, R.O. Bovine tooth is a substitute for human tooth on bond strength studies: A systematic review and meta-analysis of in vitro studies. Dent. Mater. 2016, 32, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Yassen, G.H.; Platt, J.A.; Hara, A.T. Bovine teeth as substitute for human teeth in dental research: A review of literature. J. Oral. Sci. 2011, 53, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Pytko-Polonczyk, J.J.; Jakubik, A.; Przeklasa-Bierowiec, A.; Muszynska, B. Artificial saliva and its use in biological experiments. J. Physiol. Pharmacol. 2017, 68, 807–813. [Google Scholar]
- Nabawy, Y.A.; Yousry, T.N.; El-Harouni, N.M. Shear bond strength of metallic brackets bonded to enamel pretreated with Er,Cr:YSGG LASER and CPP-ACP. BMC Oral Health 2021, 21, 306. [Google Scholar] [CrossRef] [PubMed]
- Sam, G. Evaluation of shear bond strength of orthodontic bracket after using various etching systems: An in vitro study. World J. Dent. 2021, 12, 107–110. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Lv, D.; Zhao, W.; Zhang, C.; Zachert, H.; Eichhoff, G.; Beroya-Eitner, M.A. Comparison of test methods for determining the tensile strength of soil and weak rocks. Front Earth Sci. 2022, 10, 835851. [Google Scholar] [CrossRef]
- Chica, J.C.; Díez, P.M.B.; Calzada, M.P. A new prediction method for the ultimate tensile strength of steel alloys with small punch test. Materials 2018, 11, 1491. [Google Scholar] [CrossRef] [Green Version]
- García, T.E.; Rodríguez, C.; Belzunce, F.J.; Suárez, C. Estimation of the mechanical properties of metallic materials by means of the small punch test. J. Alloys Compd. 2014, 582, 708–717. [Google Scholar] [CrossRef]
- Ambroziak, A. Archives of Civil Engineeringarchives of Civil Engineering. 2021. Available online: https://journals.pan.pl/dlibra/publication/137156/edition/119972/content.c (accessed on 28 June 2022).
- Vartolomei, A.C.; Serbanoiu, D.C.; Ghiga, D.V.; Moldovan, M.; Cuc, S.; Pollmann, M.C.F.; Pacurar, M. Comparative evaluation of two bracket systems’ kinetic friction: Conventional and self-ligating. Materials 2022, 15, 4304. [Google Scholar] [CrossRef]
- Başaran, G.; Özer, T. İki kendinden kilitli braketin bağlanma direncinin konvansiyonel bir braketle karşılaştırılması. Turk. J. Orthod. 2009, 22, 37–44. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, G.; Singh, A.; Tandon, P.; Nagar, A. A comparison of shear bond strength of orthodontic brackets bonded with four different orthodontic adhesives. J. Orthodont. Sci. 2014, 3, 29. [Google Scholar] [CrossRef]
- Chalipa, J.; Jalali, Y.F.; Gorjizadeh, F.; Baghaeian, P.; Hoseini, M.H.; Mortezai, O. Comparison of bond strength of metal and ceramic brackets bonded with conventional and high-power LED light curing units. J. Dent. 2016, 13, 423–430. [Google Scholar]
- Milagres, F.D.S.A.; Oliveira, D.D.; Silveira, G.S.; Oliveira, E.D.F.F.; Antunes, A.N.D.G. Bond strength and failure pattern of orthodontic tubes adhered to a zirconia surface submitted to different modes of application of a ceramic primer. Materials 2019, 12, 3922. [Google Scholar] [CrossRef] [Green Version]
- Jungbauer, R.; Proff, P.; Edelhoff, D.; Stawarczyk, B. Impact of different pretreatments and attachment materials on shear bond strength between monolithic zirconia restorations and metal brackets. Sci. Rep. 2022, 12, 8514. [Google Scholar] [CrossRef]
- Justus, R.; Cubero, T.; Ondarza, R.; Morales, F. A new technique with sodium hypochlorite to increase bracket shear bond strength of fluoride-releasing resin-modified glass ionomer cements: Comparing shear bond strength of two adhesive systems with enamel surface deproteinization before etching. Semin. Orthod. 2010, 16, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Bulnes, R.; Scougall-Vilchis, R.J.; Rodríguez-Vilchis, L.E.; Centeno-Pedraza, C.; Olea-Mejía, O.F.; Alcántara-Galena, M.D.C.Z. Evaluation of self-etching adhesive and Er:YAG laser conditioning on the shear bond strength of orthodontic brackets. Sci. World J. 2013, 2013, 719182. [Google Scholar] [CrossRef] [Green Version]
- Shinya, M.; Shinya, A.; Lassila, L.V.J.; Gomi, H.; Varrela, J.; Vallittu, P.K.; Shinya, A. Treated enamel surface patterns associated with five orthodontic adhesive systems-surface morphology and shear bond strength. Dent. Mater. J. 2008, 27, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Pereira, T.B.J.; Jansen, W.C.; Pithon, M.M.; Souki, B.Q.; Tanaka, O.M.; Oliveira, D.D. Effects of enamel deproteinization on bracket bonding with conventional and resin-modified glass ionomer cements. Eur. J. Orthod. 2013, 35, 442–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Althagafi, N. Impact of fluoride-releasing orthodontic adhesives on the shear bond strength of orthodontic brackets to eroded enamel following different surface treatment protocols. J. Orthodont. Sci. 2022, 11, 3. [Google Scholar] [CrossRef]
- Scribante, A.; Gallo, S.; Pascadopoli, M.; Catalano, F.; Gandini, P.; Sfondrini, M.F. Effect of different enamel pretreating agents on bonding efficacy and survival rates of orthodontic brackets: In vitro study and split-mouth randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2022, 162, 297–306. [Google Scholar] [CrossRef]
- Özcan, M.; Vallittu, P.K.; Peltomäki, T.; Huysmans, M.C.; Kalk, W. Bonding polycarbonate brackets to ceramic: Effects of substrate treatment on bond strength. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 220–227. [Google Scholar] [CrossRef]
- Pithon, M.M.; Oliveira, M.V.D.; Ruellas, A.C.D.O.; Bolognese, A.M.; Romano, F.L. Shear bond strength of orthodontic brackets to enamel under different surface treatment conditions. J. Appl. Oral. Sci. 2007, 15, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Tepedino, M.; Potrubacz, M.I.; Arrizza, L.; Russo, M.; Cavarra, F.; Cordaro, M.; Chimenti, C. In vitro shear bond strength of orthodontic brackets after enamel conditioning with acid etching and hydroabrasion. Dent. J. 2020, 8, 108. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Xheka, E.; Scribante, A.; Gandini, P.; Sfondrini, G. Reconditioning of self-ligating brackets. Angle Orthod. 2012, 82, 158–164. [Google Scholar] [CrossRef]
- Northrup, R.G.; Berzins, D.W.; Bradley, T.G.; Schuckit, W. Shear bond strength comparison between two orthodontic adhesives and self-ligating and conventional brackets. Angle Orthod. 2007, 77, 701–706. [Google Scholar] [CrossRef] [PubMed]
Composition | % |
---|---|
Na2HPO4 | 0.3 |
NaHCO3 | |
CaCl2 | |
HCl-1M | 0.3 |
H2O | 99.4 |
Direction | Tension |
---|---|
Preload/stress | 0.5 N |
Preload/stress Speed | 1 mm/min |
Automatically zero at the start of the test | Load extension |
Test speed–Extension rate | 1 mm/min |
ASLB (n = 28) | PSLB (n = 28) | CB (n = 28) | p-Value | |
---|---|---|---|---|
Tensile Strength | ||||
Median | 10.84 | 13.94 | 11.07 | 0.3474 |
Mean | 11.89 | 14.03 | 13.35 | |
Std. Deviation | 7.085 | 6.370 | 7.750 | |
Load at Maximum Load | ||||
Median | 139.3 | 205.8 | 116.6 | 0.0114 |
Mean | 153.0 | 204.9 | 140.7 | |
Std. Deviation | 90.81 | 91.09 | 81.66 |
Dunn’s Multiple Comparison Test p-Value | |
---|---|
Tensile Strength | |
ASLB versus PSLB | 0.1425 |
ASLB versus CB | 0.5830 |
PSLB versus CB | 0.4173 |
Load at Maximum Load | |
ASLB versus PSLB | 0.0373 |
ASLB versus CB | 0.5830 |
PSLB versus CB | 0.0052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vartolomei, A.-C.; Ghiga, D.-V.; Serbanoiu, D.-C.; Moldovan, M.; Cuc, S.; Pacurar, M.; Pollmann, M.C.F. Comparative Evaluation of Two Bracket Systems’ Bond Strength: Conventional and Self-Ligating. Dent. J. 2022, 10, 196. https://doi.org/10.3390/dj10100196
Vartolomei A-C, Ghiga D-V, Serbanoiu D-C, Moldovan M, Cuc S, Pacurar M, Pollmann MCF. Comparative Evaluation of Two Bracket Systems’ Bond Strength: Conventional and Self-Ligating. Dentistry Journal. 2022; 10(10):196. https://doi.org/10.3390/dj10100196
Chicago/Turabian StyleVartolomei, Aurel-Claudiu, Dana-Valentina Ghiga, Dan-Cosmin Serbanoiu, Marioara Moldovan, Stanca Cuc, Mariana Pacurar, and Maria Cristina Figueiredo Pollmann. 2022. "Comparative Evaluation of Two Bracket Systems’ Bond Strength: Conventional and Self-Ligating" Dentistry Journal 10, no. 10: 196. https://doi.org/10.3390/dj10100196
APA StyleVartolomei, A.-C., Ghiga, D.-V., Serbanoiu, D.-C., Moldovan, M., Cuc, S., Pacurar, M., & Pollmann, M. C. F. (2022). Comparative Evaluation of Two Bracket Systems’ Bond Strength: Conventional and Self-Ligating. Dentistry Journal, 10(10), 196. https://doi.org/10.3390/dj10100196