Application of Metal Halide Perovskites as Photocatalysts in Organic Reactions
Abstract
:1. Introduction
2. Lead-Based MHPs
2.1. Nanomaterials
2.2. Bulk
3. Lead-Free MHPs
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reischauer, S.; Pieber, B. Emerging Concepts in Photocatalytic Organic Synthesis. iScience 2021, 24, 102209. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, Y.; San Martin, J.; Sun, Y.; Zhu, D.; Yan, Y. Lead Halide Perovskites for Photocatalytic Organic Synthesis. Nat. Commun. 2019, 10, 2843. [Google Scholar] [CrossRef] [PubMed]
- Romero, N.A.; Nicewicz, D.A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. [Google Scholar] [CrossRef]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Z.; Gao, Y.; Meng, Q.; Yu, S.; Weiss, R.G.; Tung, C.; Wu, L. Mechanistic Insights into the Interface-directed Transformation of Thiols into Disulfides and Molecular Hydrogen by Visible-light Irradiation of Quantum Dots. Angew. Chem. 2014, 126, 2117–2121. [Google Scholar] [CrossRef]
- Zhang, Z.; Edme, K.; Lian, S.; Weiss, E.A. Enhancing the Rate of Quantum-Dot-Photocatalyzed Carbon–Carbon Coupling by Tuning the Composition of the Dot’s Ligand Shell. J. Am. Chem. Soc. 2017, 139, 4246–4249. [Google Scholar] [CrossRef] [PubMed]
- Cherevatskaya, M.; Neumann, M.; Füldner, S.; Harlander, C.; Kümmel, S.; Dankesreiter, S.; Pfitzner, A.; Zeitler, K.; König, B. Visible-light-promoted Stereoselective Alkylation by Combining Heterogeneous Photocatalysis with Organocatalysis. Angew. Chem. Int. Ed. 2012, 51, 4062–4066. [Google Scholar] [CrossRef]
- Nicewicz, D.A.; MacMillan, D.W. Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric Alkylation of Aldehydes. Science 2008, 322, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef]
- Saparov, B.; Mitzi, D.B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116, 4558–4596. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, Y.; Sun, Y.; Beard, M.C.; Yan, Y. Lead-Halide Perovskites for Photocatalytic α-Alkylation of Aldehydes. J. Am. Chem. Soc. 2019, 141, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Stoumpos, C.C.; Kanatzidis, M.G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. J. Am. Chem. Soc. 2018, 141, 1171–1190. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, M.; Moore, D.T.; Yan, Y.; Miller, E.M.; Zhu, K.; Beard, M.C. Top and Bottom Surfaces Limit Carrier Lifetime in Lead Iodide Perovskite Films. Nat. Energy 2017, 2, 16207. [Google Scholar] [CrossRef]
- Yang, Y.; Ostrowski, D.P.; France, R.M.; Zhu, K.; Van De Lagemaat, J.; Luther, J.M.; Beard, M.C. Observation of a Hot-Phonon Bottleneck in Lead-Iodide Perovskites. Nat. Photonics 2016, 10, 53–59. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-Hole Diffusion Lengths > 175 Mm in Solution-Grown CH3NH3PbI3 Single Crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. [Google Scholar] [CrossRef]
- Chen, K.; Deng, X.; Dodekatos, G.; Tüysüz, H. Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over Cesium Lead Iodide Perovskite Quantum Dots. J. Am. Chem. Soc. 2017, 139, 12267–12273. [Google Scholar] [CrossRef] [Green Version]
- Wong, Y.; De Andrew Ng, J.; Tan, Z. Perovskite-initiated Photopolymerization for Singly Dispersed Luminescent Nanocomposites. Adv. Mater. 2018, 30, 1800774. [Google Scholar] [CrossRef]
- Wu, W.-B.; Wong, Y.-C.; Tan, Z.-K.; Wu, J. Photo-Induced Thiol Coupling and C–H Activation Using Nanocrystalline Lead-Halide Perovskite Catalysts. Catal. Sci. Technol. 2018, 8, 4257–4263. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, K. Organic–Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications. Chem. Soc. Rev. 2016, 45, 655–689. [Google Scholar] [CrossRef]
- Romani, L.; Malavasi, L. Solar-Driven Hydrogen Generation by Metal Halide Perovskites: Materials, Approaches, and Mechanistic View. ACS Omega 2020, 5, 25511–25519. [Google Scholar] [CrossRef]
- Feng, A.; Jiang, X.; Zhang, X.; Zheng, X.; Zheng, W.; Mohammed, O.F.; Chen, Z.; Bakr, O.M. Shape Control of Metal Halide Perovskite Single Crystals: From Bulk to Nanoscale. Chem. Mater. 2020, 32, 7602–7617. [Google Scholar] [CrossRef]
- González-Carrero, S.; Galian, R.E.; Pérez-Prieto, J. Organometal Halide Perovskites: Bulk Low-Dimension Materials and Nanoparticles. Part. Part. Syst. Charact. 2015, 32, 709–720. [Google Scholar] [CrossRef]
- Pisanu, A.; Quadrelli, P.; Malavasi, L. Facile Anion-Exchange Reaction in Mixed-Cation Lead Bromide Perovskite Nanocrystals. RSC Adv. 2019, 9, 13263–13268. [Google Scholar] [CrossRef] [Green Version]
- Pisanu, A.; Ferrara, C.; Quadrelli, P.; Guizzetti, G.; Patrini, M.; Milanese, C.; Tealdi, C.; Malavasi, L. The FA1−x MAx PbI3 System: Correlations among Stoichiometry Control, Crystal Structure, Optical Properties, and Phase Stability. J. Phys. Chem. C 2017, 121, 8746–8751. [Google Scholar] [CrossRef]
- Lu, H.; Zhu, X.; Miller, C.; Martin, J.S.; Chen, X.; Miller, E.M.; Yan, Y.; Beard, M.C. Enhanced Photoredox Activity of CsPbBr3 Nanocrystals by Quantitative Colloidal Ligand Exchange. J. Chem. Phys. 2019, 151, 204305. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lu, H.; Zhu, X.; Lin, Y.; Beard, M.C.; Yan, Y.; Chen, X. Ultrafast Reaction Mechanisms in Perovskite Based Photocatalytic C–C Coupling. ACS Energy Lett. 2020, 5, 566–571. [Google Scholar] [CrossRef]
- Rosa-Pardo, I.; Casadevall, C.; Schmidt, L.; Claros, M.; Galian, R.E.; Lloret-Fillol, J.; Perez-Prieto, J. The Synergy between the CsPbBr3 Nanoparticle Surface and the Organic Ligand Becomes Manifest in a Demanding Carbon–Carbon Coupling Reaction. ChemComm 2020, 56, 5026–5029. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Sun, K.; Chen, X.-L.; Zhang, Z.-X.; Huang, X.-Q.; Peng, Y.-Y.; Qu, L.-B.; Yu, B. Recyclable Perovskite as Heterogeneous Photocatalyst for Aminomethylation of Imidazo-Fused Heterocycles. Adv. Synth. Catal. 2020, 362, 2143–2149. [Google Scholar] [CrossRef]
- Peng, Y.; Albero, J.; García, H. Surface Silylation of Hybrid Benzidinium Lead Perovskite and Its Influence on the Photocatalytic Activity. ChemCatChem 2019, 11, 6384–6390. [Google Scholar] [CrossRef]
- Schünemann, S.; van Gastel, M.; Tüysüz, H. A CsPbBr3/TiO2 Composite for Visible-Light-Driven Photocatalytic Benzyl Alcohol Oxidation. ChemSusChem 2018, 11, 2057–2061. [Google Scholar] [CrossRef] [PubMed]
- Zhu, E.; Zhao, Y.; Dai, Y.; Wang, Q.; Dong, Y.; Chen, Q.; Li, Y. Heterojunction-Type Photocatalytic System Based on Inorganic Halide Perovskite CsPbBr3. Chin. J. Chem. 2020, 38, 1718–1722. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, H.; Janssen, K.P.F.; Solís-Fernández, G.; Wang, Y.; Tan, C.Y.X.; Jonckheere, D.; Debroye, E.; Long, J.; Hendrix, J.; et al. Efficient and Selective Photocatalytic Oxidation of Benzylic Alcohols with Hybrid Organic–Inorganic Perovskite Materials. ACS Energy Lett. 2018, 3, 755–759. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Yuan, H.; Zhao, J.; Solís-Fernández, G.; Zhou, C.; Seo, J.W.; Hendrix, J.; Debroye, E.; Steele, J.A.; Hofkens, J.; et al. C(Sp3)–H Bond Activation by Perovskite Solar Photocatalyst Cell. ACS Energy Lett. 2019, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Qiu, P.; Wang, Q.; Zhao, Y.; Dai, Y.; Dong, Y.; Chen, C.; Chen, Q.; Li, Y. Fabricating Surface-Functionalized CsPbBr3/Cs4PbBr6 Nanosheets for Visible-Light Photocatalytic Oxidation of Styrene. Front. Chem. 2020, 8, 130. [Google Scholar] [CrossRef]
- Li, Y.; Shu, Q.; Du, Q.; Dai, Y.; Zhao, S.; Zhang, J.; Li, L.; Chen, K. Surface Modification for Improving the Photocatalytic Polymerization of 3,4-Ethylenedioxythiophene over Inorganic Lead Halide Perovskite Quantum Dots. ACS Appl. Mater. Interfaces 2020, 12, 451–460. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Miller, K.A.; Zhu, H.; Egap, E. Lead Halide Perovskite Nanocrystals as Photocatalysts for PET-RAFT Polymerization under Visible and Near-Infrared Irradiation. ACS Macro Lett. 2020, 9, 725–730. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [Green Version]
- Hong, Z.; Chong, W.K.; Ng, A.Y.R.; Li, M.; Ganguly, R.; Sum, T.C.; Soo, H.S. Hydrophobic Metal Halide Perovskites for Visible-Light Photoredox CÀC Bond Cleavage and Dehydrogenation Catalysis. Angew. Chem. Int. Ed. 2019, 58, 3456–3460. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Z.; Xin, X.; Zhang, J.; Feng, Y.; Lv, H. Selective Valorization of 5-Hydroxymethylfurfural to 2,5-Diformylfuran Using Atmospheric O2 and MAPbBr3 Perovskite under Visible Light. ACS Catal. 2020, 10, 14793–14800. [Google Scholar] [CrossRef]
- Dong, Y.; Li, K.; Luo, W.; Zhu, C.; Guan, H.; Wang, H.; Wang, L.; Deng, K.; Zhou, H.; Xie, H.; et al. The Role of Surface Termination in Halide Perovskites for Efficient Photocatalytic Synthesis. Angew. Chem. Int. Ed. 2020, 59, 12931–12937. [Google Scholar] [CrossRef] [PubMed]
- Corti, M.; Chiara, R.; Romani, L.; Mannucci, B.; Malavasi, L.; Quadrelli, P. G-C3N4/Metal Halide Perovskite Composites as Photocatalysts for Singlet Oxygen Generation Processes for the Preparation of Various Oxidized Synthons. Catal. Sci. Technol. 2021, 11, 2292–2298. [Google Scholar] [CrossRef]
- Dai, Y.; Tüysüz, H. Lead-Free Cs3Bi2Br9 Perovskite as Photocatalyst for Ring-Opening Reactions of Epoxides. ChemSusChem 2019, 12, 2587–2592. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Poidevin, C.; Ochoa-Hernµndez, C.; Auer, A.A.; Tüysüz, H. A Supported Bismuth Halide Perovskite Photocatalyst for Selective Aliphatic and Aromatic C–H Bond Activation. Angew. Chem. Int. Ed. 2020, 59, 5788–5796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, Y.; Wang, Y.; Yang, L.; Li, Q.; Chen, L.; Xu, D. Revealing the A-Site Effect of Lead-Free A3Sb2Br9 Perovskite in Photocatalytic C(Sp3)ÀH Bond Activation. Angew. Chem. 2020, 132, 18293–18296. [Google Scholar] [CrossRef]
Catalyst | Reaction | Reaction Yield | Illumination | Reference | |
---|---|---|---|---|---|
CsPbBr3 | NCs | α-alkylation reaction of aldehydes | 70% | Blue LED (450 nm) | [26] |
CsPbBr3 | NCs | α-alkylation reaction of aldehydes | - | - | [27] |
CsPbBr3 | NCs | α-alkylation reaction of aldehydes | 96% | Blue LED (455 nm) | [11] |
MAPbBr3 | |||||
CsPbBr3 | NCs | C-C bond formation via C-H activation | Up to 85% | Blue LED (455 nm) | [2] |
N-heterocyclization | Up to 90% | ||||
C-O cross-coupling | Up to 85% | ||||
CsPbBr3 | NCs | C-C coupling | Up to 83% | 447 nm | [28] |
CsPbBr3 | NCs | aminomethylation of imidazo-fused heterocycles | Up to 94% | White LED | [29] |
CsPbX3 (X = I, Br, Cl) | NCs | oxidative coupling of thiols | Up to 98% | White LED | [19] |
phosphonylation of tertiary amines | Up to 96% | ||||
Bz0.5PbI3 | covered with nanometric silane layer | cis-to-trans isomerization of stilbene | Up to 100% | Xe lamp (λ > 450 nm) | [30] |
CsPbBr3 | NCs supported onto TiO2 | benzyl alcohol oxidation | 50% | Xe lamp (λ > 420 nm) | [31] |
CsPbBr3 | NCs supported onto TiO2 | toluene oxidation | - | Xe lamp (λ > 420 nm) | [32] |
FAPbBr3 | NCs supported onto TiO2 | benzylic alcohols oxidation | Up to 63% | Simulated solar light | [33] |
FAPbBr3 | NCs supported between NiO and TiO2 | Csp3-H bond activation in cycloalkanes and aromatic alkanes | Up to 1.02% | Simulated solar light | [34] |
CsPbBr3/Cs4PbBr6 | Nanosheets | oxidation of styrene | - | White LED | [35] |
CsPbI3 | NCs | polymerization of TerEDOT | - | Simulated solar light | [17] |
CsPbX3 (X = I, I0.67Br0.33, I0.5Br0.5, I0.33Br0.67, Br) | NCs | polymerization of TerEDOT | - | Xe lamp | [36] |
CsPbBr3 | NCs | PET-RAFT polymerization | Up to 97% | Blue LED | [37] |
Catalyst | Reaction | Reaction Yield | Illumination | Reference | |
---|---|---|---|---|---|
HDA2PbI4 (HAD = hexadecylammonium) | Decarboxylation of indoline-2-carboxilyc acid | Up to 98% | White LED | [39] | |
Dehydrogenation of indoline-2-carboxilyc acid | Up to 84% | ||||
MAPbBr3 | hydroxymethylfurfural oxidation | Up to 90% | 450 nm | [40] | |
MAPbI3 | Conversion of triose to butyl lactate | 60% | Solar light | [41] | |
FAPbI3 | 25% | ||||
MAPbBr3 | - | ||||
PEA2PbX4 (X = Br, Cl) | Supported onto C3N4 | 1O2 hetero Diels-Alder cycloaddition reaction | Up to 43% | Simulated solar light | [42] |
Catalyst | Reaction | Reaction Yield | Illumination | Reference | |
---|---|---|---|---|---|
HDA2SnI4 (HAD = hexadecylammonium) | Decarboxylation of indoline-2-carboxilyc acid | 30% | White LED | [39] | |
Dehydrogenation of indoline-2-carboxilyc acid | 47% | ||||
Cs3Bi2Br9 | ring-opening of epoxides | Up to 88% | λ > 420 nm | [43] | |
Cs3Bi2Br9 | Toluene oxidation | 0.23% | Xe lamp (λ > 420 nm) | [44] | |
Cs3Sb2Br9 | Toluene oxidation | - | λ > 420 nm | [45] | |
PEA2SnBr4 | Supported onto C3N4 | 1O2 hetero Diels-Alder cycloaddition reaction | 26% | Simulated solar light | [42] |
DMASnBr3 | Supported onto C3N4 | 63% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corti, M.; Bonomi, S.; Chiara, R.; Romani, L.; Quadrelli, P.; Malavasi, L. Application of Metal Halide Perovskites as Photocatalysts in Organic Reactions. Inorganics 2021, 9, 56. https://doi.org/10.3390/inorganics9070056
Corti M, Bonomi S, Chiara R, Romani L, Quadrelli P, Malavasi L. Application of Metal Halide Perovskites as Photocatalysts in Organic Reactions. Inorganics. 2021; 9(7):56. https://doi.org/10.3390/inorganics9070056
Chicago/Turabian StyleCorti, Marco, Sara Bonomi, Rossella Chiara, Lidia Romani, Paolo Quadrelli, and Lorenzo Malavasi. 2021. "Application of Metal Halide Perovskites as Photocatalysts in Organic Reactions" Inorganics 9, no. 7: 56. https://doi.org/10.3390/inorganics9070056
APA StyleCorti, M., Bonomi, S., Chiara, R., Romani, L., Quadrelli, P., & Malavasi, L. (2021). Application of Metal Halide Perovskites as Photocatalysts in Organic Reactions. Inorganics, 9(7), 56. https://doi.org/10.3390/inorganics9070056