Thermotropic Liquid-Crystalline Materials Based on Supramolecular Coordination Complexes
Abstract
:1. Introduction
2. Lyotropic Liquid-Crystalline Self-Assembled Coordination Complexes
3. Thermotropic Liquid-Crystalline Self-Assembled Coordination Complexes
4. Suppression of Liquid-Crystalline Properties by Self-Assembled Coordination Complexes
5. Conclusions
Funding
Conflicts of Interest
References
- Kato, T.; Uchida, J.; Ichikawa, T.; Sakamoto, T. Functional liquid crystals towards the next generation of materials. Angew. Chem. Int. Ed. 2018, 57, 4355–4371. [Google Scholar] [CrossRef] [PubMed]
- Khokhlov, A.R.; Emelyanenko, A.V. Nanostructures liquid crystal systems and applications. Beilstein J. Nanotechnol. 2018, 9, 2644–2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodby, J.W. Editorial – liquid crystals. Chem. Soc. Rev. 2007, 36, 1855–1856. [Google Scholar] [CrossRef] [PubMed]
- Donnio, B.; Guillon, D.; Bruce, D.W.; Deschenaux, R. Comprehensive Coordination Chemistry II: From Biology to Nanotechnology; McCleverty, J.A., Meyer, T.J., Eds.; Elsevier: Oxford, UK, 2003; Volume 7, pp. 357–627. [Google Scholar]
- Amijs, C.H.M.; van Klink, G.P.M.; van Koten, G. Metallasupramolecular architectures, an overview of functional properties and applications. Dalton Trans. 2006, 2006, 308–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saalfrank, R.W.; Maid, H.; Scheurer, A. Supramolecular coordination chemistry: The synergistic effect of serendipity and rational design. Angew. Chem. Int. Ed. 2008, 47, 8794–8824. [Google Scholar] [CrossRef] [PubMed]
- Zangrando, E.; Casanova, M.; Alessio, E. Trinuclear metallacycles: Metallatriangles and much more. Chem. Rev. 2008, 108, 4979–5013. [Google Scholar] [CrossRef]
- Pucci, D.; Donnio, B. Metal-containing liquid crystals. In Handbook of Liquid Crystals; Non-Conventional, Supramolecular, Chromonic and Amphiphilic Liquid Crystals; Goodby, J.W., Collings, P.J., Kato, T., Tschierske, C., Gleeson, H., Raynes, P., Eds.; Wiley-VCH: Weinheim, Germany, 2014; Volume 5. [Google Scholar]
- Dzhardimalieva, G.I.; Uflyand, I.E. Metal chelate monomers as precursors of polymeric materials. J. Inorg. Organomet. Chem. 2016, 26, 1112–1173. [Google Scholar] [CrossRef]
- Uchida, J.; Kato, T. Liquid-crystalline fork-like dendrons. Liq. Cryst. 2017, 44, 1816–1829. [Google Scholar] [CrossRef]
- Tschierske, C. Amphotropic liquid crystals. Curr. Opin. Colloid Interface Sci. 2002, 7, 355–370. [Google Scholar] [CrossRef]
- Goodby, J.W. Liquid crystals and life. Liq. Cryst. 1998, 24, 25–38. [Google Scholar] [CrossRef]
- Stewart, G.T. Liquid crystals in biology I. Historical, biological and medical aspects. Liq. Cryst. 2003, 30, 541–557. [Google Scholar] [CrossRef]
- Stewart, G.T. Liquid crystals in biology II. Origins and processes of life. Liq. Cryst. 2004, 31, 443–471. [Google Scholar] [CrossRef]
- Woltman, S.J.; Jay, G.D.; Crawford, G.P. Liquid-crystal materials find a new order in biomedical applications. Nat. Mater. 2007, 6, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Hirst, L.S.; Charras, G. Liquid crystals in living tissue. Nature 2017, 544, 164–165. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shi, Y.; Yang, K.; Wei, J.; Guo, J. Stabilization and optical switching of liquid crystal blue phase doped with azobenzene-based bent-shaped hydrogen-bonded assemblies. RSC Adv. 2015, 5, 67357–67364. [Google Scholar] [CrossRef]
- Jau, H.-C.; Li, Y.; Li, C.-C.; Chen, C.-W.; Wang, C.-T.; Bisoyi, H.K.; Lin, T.-H.; Bunning, T.J.; Li, Q. Light-driven wide-range nonmechanical beam steering and spectrum scanning based on a self-organized liquid crystal grating enabled by a chiral molecular switch. Adv. Opt. Mater. 2015, 3, 166–170. [Google Scholar] [CrossRef]
- Bukusoglu, E.; Bedolla Pantoja, M.; Mushenheim, P.C.; Wang, X.; Abbott, N.L. Design of responsive and active (soft) materials using liquid crystals. Ann. Rev. Chem. Biomol. Eng. 2016, 7, 163–196. [Google Scholar] [CrossRef]
- Usol’tseva, N.; Praefcke, K.; Singer, D.; Gündogan, B. Lyotropic phase behaviour of disc-shaped tetra-palladium organyls in apolar organic solvents. Liq. Cryst. 1994, 16, 601–616. [Google Scholar] [CrossRef]
- Usol’tseva, N.; Praefcke, K.; Singer, D.; Gündogan, B. The first case of a lyotropic twisted nematic (N∗) phase induced by a chiral charge transfer complex. Liq. Cryst. 1994, 16, 617–623. [Google Scholar] [CrossRef]
- Praefcke, K.; Dielde, S.; Pickardt, J.; Gündogan, B.; Nütz, U.; Singer, D. On the molecular and mesophase structures of disc-like tetrapalladium liquid crystals. Liq. Cryst. 1995, 18, 857–865. [Google Scholar] [CrossRef]
- Usol’tseva, N.; Hauck, G.; Koswing, H.D.; Praefcke, K.; Heinrich, B. On the nematic-nematic phase transition in mixtures composed of sheet-shaped palladium organyls and apolar organic solvents. Liq. Cryst. 1996, 20, 731–739. [Google Scholar] [CrossRef]
- Heinrich, B.; Praefcke, K.; Guillon, D.J. Structural study of columnar liquid-crystalline phases in homologous series of tetrapalladium organyls. J. Mater. Chem. 1997, 7, 1363–1372. [Google Scholar] [CrossRef]
- Praefcke, K.; Holbrey, J.D.; Usol’tseva, N.; Blunk, D. Amphotropic properties of multi-palladium and -platinum liquid crystals. Mol. Cryst. Liq. Cryst. 1997, 292, 123–139. [Google Scholar] [CrossRef]
- Frischmann, P.D.; Guieu, S.; Tabeshi, R.; MacLachlan, M.J. Columnar organization of head-to-tail self-assembled Pt4 rings. J. Am. Chem. Soc. 2010, 132, 7668–7675. [Google Scholar] [CrossRef] [PubMed]
- Pecinovsky, C.S.; Hatakeyama, E.S.; Gin, D.L. Polymerizable photochromic macrocyclic metallomesogens: Design of supramolecular polymers with responsive nanopores. Adv. Mater. 2008, 20, 174–178. [Google Scholar] [CrossRef]
- Barberá, J.; Elduque, A.; Giménez, R.; Lahoz, F.J.; López, J.A.; Oro, L.A.; Serrano, J.L. (Pyrazolato) gold complexes showing room-temperature columnar mesophases. Synthesis, properties, and structural characterization. Inorg. Chem. 1998, 37, 2960–2967. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Hanaoka, Y.; Yoshizawa, M.; Akita, M.; Ichikawa, T.; Yoshio, M.; Kato, T.; Fujita, M. m x n Stacks of discrete aromatic stacks in solution. J. Am. Chem. Soc. 2010, 132, 9555–9557. [Google Scholar] [CrossRef]
- Terazzi, E.; Bourgogne, C.; Welter, R.; Gallani, J.-L.; Guillon, D.; Rogez, G.; Donnio, B. Single-molecule magnets with mesomorphic lamellar ordering. Angew. Chem. Int. Ed. 2008, 47, 490–495. [Google Scholar] [CrossRef]
- Frein, S.; Auzias, M.; Sondenecker, A.; Vieille-Petit, L.; Guintchin, B.; Maringa, N.; Süss-Fink, G.; Barberá, J.; Deschenaux, R. Mesomorphic metallo-dendrimers based on the metal-metal bonded Ru2(CO)4 sawhorse unit. Chem. Mater. 2008, 20, 1340–1343. [Google Scholar] [CrossRef]
- Huitorel, B.; Benito, Q.; Fargues, A.; Garcia, A.; Gacoin, T.; Boilot, J.-P.; Perruchas, S.; Camerel, F. Mechanochromic luminescence and liquid crystallinity of molecular copper clusters. Chem. Mater. 2016, 28, 8190–8200. [Google Scholar] [CrossRef]
- Uchida, J.; Yoshio, M.; Sato, S.; Yokoyama, H.; Fujita, M.; Kato, T. Self-assembly of giant spherical liquid-crystalline complexes and formation of nanostructured dynamic gels that exhibit self-healing properties. Angew. Chem. Int. Ed. 2017, 56, 14085–14089. [Google Scholar] [CrossRef] [PubMed]
- Kawano, S.; Hamazaki, T.; Suzuki, A.; Kurahashi, K.; Tanaka, K. Metal-ion-induced switch of liquid-crystalline orientation of metallomacrocycles. Chem. Eur. J. 2016, 22, 15674–15683. [Google Scholar] [CrossRef] [PubMed]
- Kawano, S.; Ishida, Y.; Tanaka, K. Columnar liquid-crystalline metallomacrocycles. J. Am. Chem. Soc. 2015, 137, 2295–2302. [Google Scholar] [CrossRef] [PubMed]
- Barry, N.P.E.; Furrer, J.; Therrien, B. In- and out-cavity interactions by modulating the size of ruthenium metallarectangles. Helv. Chim. Acta 2010, 93, 1313–1328. [Google Scholar] [CrossRef] [Green Version]
- Alvariño, C.; Heinrich, B.; Donnio, B.; Deschenaux, R.; Therrien, B. Supramolecular arene-ruthenium metallacycle with thermotropic liquid-crystalline properties. Inorg. Chem. 2019, 58, 9505–9512. [Google Scholar] [CrossRef] [PubMed]
- Therrien, B. Biologically relevant arene ruthenium metalla-assemblies. CrystEngComm 2015, 17, 484–491. [Google Scholar] [CrossRef]
- Therrien, B. The role of the second coordination sphere in the biological activity of arene ruthenium metalla-assemblies. Front. Chem. 2018, 6, art602. [Google Scholar] [CrossRef]
- Mattsson, J.; Zava, O.; Renfrew, A.K.; Sei, Y.; Yamaguchi, K.; Dyson, P.J.; Therrien, B. Drug delivery of lipophilic pyrenyl derivatives by encapsulation in a water soluble metalla-cage. Dalton Trans. 2010, 39, 8248–8255. [Google Scholar] [CrossRef] [Green Version]
- Pitto-Barry, A.; Barry, N.P.E.; Russo, V.; Heinrich, B.; Donnio, B.; Therrien, B.; Deschenaux, R. Designing supramolecular liquid-crystalline hybrids from pyrenyl-containing dendrimers and arene ruthenium metallacycles. J. Am. Chem. Soc. 2014, 136, 17616–17625. [Google Scholar] [CrossRef]
- Stang, P.J.; Olenyuk, B. Self-assembly, symmetry, and molecular architecture: Coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedral. Acc. Chem. Res. 1997, 30, 502–518. [Google Scholar] [CrossRef]
- Therrien, B.; Süss-Fink, G.; Govindaswamy, P.; Renfrew, A.K.; Dyson, P.J. The “complex-in-a-complex” cations [(acac)2M⊂Ru6(p-iPrC6H4Me)6(tpt)2(dhbq)3]6+: A Trojan horse for cancer cells. Angew. Chem. Int. Ed. 2008, 47, 3773–3776. [Google Scholar] [CrossRef] [PubMed]
- Amouri, H.; Desmarets, C.; Moussa, J. Confined nanospaces in metallocages: Guest molecules, weakly encapsulated anions, and catalyst sequestration. Chem. Rev. 2012, 112, 2015–2041. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, M.; Klosterman, J.K.; Fujita, M. Functional molecular flasks: New properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 2009, 48, 3418–3438. [Google Scholar] [CrossRef] [PubMed]
- Pitto-Barry, A.; Barry, N.P.E.; Zava, O.; Deschenaux, R.; Therrien, B. Encapsulation of pyrene-functionalized poly(benzyl ether) dendrons into a water-soluble organometallic cage. Chem. Asian J. 2011, 6, 1595–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Ye, Y.; Tong, Z.; Yang, J.; Li, Z.; Hua, B.; Shao, L.; Li, S. A porphyrin-based discrete tetragonal prismatic cage: Host-guest complexation and its application in tuning liquid-crystalline behavior. Macromol. Rapid Commun. 2016, 37, 1540–1547. [Google Scholar] [CrossRef] [PubMed]
- Bader, K.; Wöhrle, T.; Öztürk, E.; Baro, A.; Laschat, S. Encapsulating propeller-like columnar liquid crystals with an aromatic outer shell: Influence of phenoxy-terminated side chains on the phase behavior of triphenylbenzenes. Soft Matter 2018, 14, 6409–6414. [Google Scholar] [CrossRef]
- Ren, Y.-Y.; Xu, Z.; Li, G.; Huang, J.; Fan, X.; Xu, L. Hierarchical self-assembly of a fluorescence emission-enhanced organogelator and its multiple stimuli-responsive behaviors. Dalton Trans. 2017, 46, 333–337. [Google Scholar] [CrossRef]
- Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161. [Google Scholar] [CrossRef]
- Zheludev, N.; Kivshar, Y.S. From metamaterials to metadevices. Nat. Mater. 2012, 11, 917–924. [Google Scholar] [CrossRef]
- Ohm, C.; Brehmer, M.; Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 2010, 22, 3366–3387. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, Q.; Tian, H. Photochromic materials: More than meets the eye. Adv. Mater. 2013, 25, 378–399. [Google Scholar] [CrossRef] [PubMed]
- Mercs, L.; Albrecht, M. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal luminescent, and functional materials applications. Chem. Soc. Rev. 2010, 39, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Priimagi, A.; Cavallo, G.; Metrangolo, P.; Resnati, G. The halogen bond in the design of functional supramolecular materials: Recent advances. Acc. Chem. Res. 2013, 46, 2686–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.J.; Broer, D.J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098. [Google Scholar] [CrossRef]
- Coles, H.; Morris, S. Liquid-crystal lasers. Nat. Photonics 2010, 4, 676–685. [Google Scholar] [CrossRef]
- O’Neill, M.; Kelly, S.M. Ordered materials for organic electronics and photonics. Adv. Mater. 2011, 23, 566–584. [Google Scholar] [CrossRef]
- Tschierske, C. Development of structural complexity by liquid-crystal self-assembly. Angew. Chem. Int. Ed. 2013, 52, 8828–8878. [Google Scholar] [CrossRef]
- Lehn, J.-M. Towards self-organization and complex matter. Science 2002, 295, 2400–2403. [Google Scholar] [CrossRef] [Green Version]
- Holliday, B.J.; Mirkin, C.A. Strategies for the coordination of supramolecular compounds through coordination chemistry. Angew. Chem. Int. Ed. 2001, 40, 2022–2043. [Google Scholar] [CrossRef]
- Cook, T.R.; Zheng, Y.-R.; Stang, P.J. Metal−organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal−organic materials. Chem. Rev. 2013, 113, 734–777. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. Rational design of polynuclear organometallic assemblies from a simple heteromultifunctional ligand. J. Am. Chem. Soc. 2015, 137, 13670–13678. [Google Scholar] [CrossRef] [PubMed]
- Sepehrpour, H.; Fu, W.; Sun, Y.; Stang, P.J. Biomedically relevant self-assembled metallacycles and metallacages. J. Am. Chem. Soc. 2019, 141, 14005–14020. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Therrien, B. Thermotropic Liquid-Crystalline Materials Based on Supramolecular Coordination Complexes. Inorganics 2020, 8, 2. https://doi.org/10.3390/inorganics8010002
Therrien B. Thermotropic Liquid-Crystalline Materials Based on Supramolecular Coordination Complexes. Inorganics. 2020; 8(1):2. https://doi.org/10.3390/inorganics8010002
Chicago/Turabian StyleTherrien, Bruno. 2020. "Thermotropic Liquid-Crystalline Materials Based on Supramolecular Coordination Complexes" Inorganics 8, no. 1: 2. https://doi.org/10.3390/inorganics8010002
APA StyleTherrien, B. (2020). Thermotropic Liquid-Crystalline Materials Based on Supramolecular Coordination Complexes. Inorganics, 8(1), 2. https://doi.org/10.3390/inorganics8010002