Next Article in Journal
Electronic Effects of the Substituents on Relaxometric and CEST Behaviour of Ln(III)-DOTA-Tetraanilides
Next Article in Special Issue
Electrochemical and Computational Insights into the Reduction of [Fe2(CO)6{µ-(SCH2)2GeMe2}] Hydrogenase H-Cluster Mimic
Previous Article in Journal
Synthesis and Structural Characterization of Two New Main Group Element Carboranylamidinates
Previous Article in Special Issue
Electronic Communication between Dithiolato-Bridged Diiron Carbonyl and S-Bridged Redox-Active Centres
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle

Understanding Factors that Control the Structural (Dis)Assembly of Sulphur-Bridged Bimetallic Sites

Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
*
Author to whom correspondence should be addressed.
Inorganics 2019, 7(4), 42; https://doi.org/10.3390/inorganics7040042
Received: 19 February 2019 / Revised: 13 March 2019 / Accepted: 13 March 2019 / Published: 27 March 2019
(This article belongs to the Special Issue Binuclear Complexes)
  |  
PDF [1834 KB, uploaded 27 March 2019]
  |  

Abstract

Bimetallic structures of the general type [M2(µ-S)2] are omnipresent in nature, for biological function [M2(µ-S)2] sites interconvert between electronically distinct, but isostructural, forms. Different from structure-function relationships, the current understanding of the mechanism of formation and persistence of [M2(µ-S)2] sites is poorly developed. This work reports on bimetallic model compounds of nickel that interconvert between functional structures [Ni2(µ-S)2]+/2+ and isomeric congeners [2{κ-S–Ni}]2+/+, S = Aryl-S, in which the nickel ions are geometrically independent. Interconversion of the two sets of structures was studied quantitatively by UV–VIS absorption spectroscopy and cyclic voltammetry. Assembly of the [Ni2(µ-S)2]+ core from [2{κ-S–Ni}]+ is thermodynamically and kinetically highly preferred over the disassembly of [Ni2(µ-S)2]2+ into [2{κ-S–Ni}]2+. Labile Ni-η2/3-bonding to aromatic π-systems of the primary thiophenol ligand is critical for modeling (dis)assembly processes. A phosphine coligand mimics the role of anionic donors present in natural sites that saturate metal coordination. Three parameters have been identified as critical for structure formation and persistence. These are, first, the stereoelectronic properties of the metals ions, second, the steric demand of the coligand, and, third, the properties of the dative bond between nickel and coligand. The energies of transition states connecting functional and precursor forms have been found to depend on these parameters. View Full-Text
Keywords: bimetallic complexes; nickel; thiolate ligands; kinetic study; electrochemistry; structure-function relationship bimetallic complexes; nickel; thiolate ligands; kinetic study; electrochemistry; structure-function relationship
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Alrefai, R.; Eggenweiler, H.; Schubert, H.; Berkefeld, A. Understanding Factors that Control the Structural (Dis)Assembly of Sulphur-Bridged Bimetallic Sites. Inorganics 2019, 7, 42.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Inorganics EISSN 2304-6740 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top