Gd3Li3Te2O12:U6+,Eu3+: A Tunable Red Emitting Garnet Showing Efficient U6+ to Eu3+ Energy Transfer at Room Temperature
Abstract
:1. Introduction
2. Method of Calculation and Electronic Properties
3. Results and Discussion
4. Experimental Section
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Welker, T. Recent developments on phosphors for fluorescent lamps and cathode-ray tubes. J. Lumin. 1991, 48–49, 49–56. [Google Scholar] [CrossRef]
- Feldmann, C.; Jüstel, T.; Ronda, C.R.; Schmidt, P.J. Inorganic Luminescent Materials: 100 Years of Research and Application. Adv. Funct. Mater. 2003, 13, 511–516. [Google Scholar] [CrossRef]
- Baur, F.; Jüstel, T. New Red-Emitting Phosphor La2Zr3(MoO4)9:Eu3+ and the Influence of Host Absorption on its Luminescence Efficiency. Aust. J. Chem. 2015, 68, 1727. [Google Scholar] [CrossRef]
- Katelnikovas, A.; Plewa, J.; Sakirzanovas, S.; Dutczak, D.; Enseling, D.; Baur, F.; Winkler, H.; Kareiva, A.; Jüstel, T. Synthesis and optical properties of Li3Ba2La3(MoO4)8:Eu3+ powders and ceramics for pcLEDs. J. Mater. Chem. 2012, 22, 22126. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, K.H.; Unithrattil, S.; Yoon, H.S.; Jang, H.G.; Im, W.B. Melilite-Structure CaYAl3O7:Eu3+ Phosphor: Structural and Optical Characteristics for Near-UV LED-Based White Light. J. Phys. Chem. C 2012, 116, 26850–26856. [Google Scholar] [CrossRef]
- Baur, F.; Glocker, F.; Jüstel, T. Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12. J. Mater. Chem. C 2015, 3, 2054–2064. [Google Scholar] [CrossRef]
- Žukauskas, A.; Vaicekauskas, R.; Ivanauskas, F.; Vaitkevičius, H.; Shur, M.S. Spectral optimization of phosphor-conversion light-emitting diodes for ultimate color rendering. Appl. Phys. Lett. 2008, 93, 51115. [Google Scholar] [CrossRef]
- Park, W.J.; Jung, M.K.; Yoon, D.H. Influence of Eu3+, Bi3+ co-doping content on photoluminescence of YVO4 red phosphors induced by ultraviolet excitation. Sens. Actuator B Chem. 2007, 126, 324–327. [Google Scholar] [CrossRef]
- Böhnisch, D.; Baur, F.; Jüstel, T. Photoluminescence and energy transfer behavior of narrow band red light emitting Li3Ba2Tb3(MoO4)8:Eu3+. Dalton Trans. 2018, 47, 1520–1529. [Google Scholar] [CrossRef] [PubMed]
- Blasse, G.; Krol, D.M. Energy transfer phenomena in ordered perovskites of the type Sr2Na0.5Ln3+0.5X6+O6. J. Lumin. 1981, 22, 389–396. [Google Scholar] [CrossRef]
- Krol, D.M.; Ros, J.P.M.; Roos, A. The influence of crystal structure and chemical composition on the energy transfer processes in uranates. J. Chem. Phys. 1980, 73, 1521–1526. [Google Scholar] [CrossRef]
- Smit, W.M.A.; Blasse, G. Luminescence and energy migration in the garnet Gd3Li3Te2O12 doped with several rare earths and uranium. J. Solid State Chem. 1986, 63, 308–315. [Google Scholar] [CrossRef]
- Köngeter, B.; Kemmler-Sack, S. Photolumineszenz und Energeitransfer in Seltenerd-aktivierten Granat Gd3Te2Li3O12. Z. Naturforsch. A 1984, 39a, 490–494. [Google Scholar] [CrossRef]
- Alberda, R.H.; Blasse, G. Luminescence in a new garnet phase with hexavalent metal ions. J. Lumin. 1976, 12–13, 687–692. [Google Scholar] [CrossRef]
- Zhang, W.; Seo, H.J. Luminescence and structure of a novel red-emitting phosphor Eu3+-doped tellurate garnet Li3Y3Te2O12. J. Alloys Compd. 2013, 553, 183–187. [Google Scholar] [CrossRef]
- Sztajnkrycer, M.D.; Otten, E.J. Chemical and Radiological Toxicity of Depleted Uranium. Mil. Med. 2004, 169, 212–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baur, F.; Jüstel, T. Warm-white LED with ultra high luminous efficacy due to sensitisation of Eu 3+ photoluminescence by the uranyl moiety in K4(UO2)Eu2(Ge2O7)2. J. Mater. Chem. C 2018, 7, 1600826. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Ceperley, D.M.; Alder, B.J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980, 45, 566–569. [Google Scholar] [CrossRef]
- Perdew, J.P. Density functional theory and the band gap problem. Int. J. Quantum Chem. 1986, 30, 451. [Google Scholar] [CrossRef]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef]
- Enseling, D.; Herden, B.; Katelnikovas, A.; Möller, S.; Winkler, H.; Petry, R.; Meyer, H.-J.; Jüstel, T. Powder Reflection Spectroscopy in the Vacuum UV range. J. Appl. Spectrosc. 2014, 81, 341–346. [Google Scholar] [CrossRef]
- Kubelka, P.; Munk, F. Ein Beitrag zur Optik der Farbanstriche. Z. Phys. 1931, 12, 593–601. [Google Scholar]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Stat. Sol. 1966, 15, 627–637. [Google Scholar] [CrossRef]
- O’Callaghan, M.P.; Lynham, D.R.; Cussen, E.J.; Chen, G.Z. Structure and Ionic-Transport Properties of Lithium-Containing Garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm–Lu). Chem. Mater. 2006, 18, 4681–4689. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Blasse, G.; Bril, A. Luminescence of tungsten-activated tellurates. J. Solid State Chem. 1970, 2, 291–294. [Google Scholar] [CrossRef]
- Jørgensen, C.K.; Lundström, T.; Patoharju, O.; Noer, B.; Reio, L. Complexes of the 4d- and 5d-Groups. IV. Electron Transfer Bands with Special Application to M. Delépine’s Complexes and a Transition from Iridium(III) to Pyridine, with some Remarks about Intermediate Coupling in Halide Complexes and the Uranyl Ion. Acta Chem. Scand. 1957, 11, 166–178. [Google Scholar] [CrossRef]
- De Hair, J.T.W.; Blasse, G. Luminescence of the octahedral uranate group. J. Lumin. 1976, 14, 307–323. [Google Scholar] [CrossRef]
- Blasse, G. The Structure Sensitivity of the U6+ Ion Luminescence in Oxides. J. Electrochem. Soc. 1977, 124, 1280. [Google Scholar] [CrossRef]
- Blasse, G.; Bleijenberg, K.C.; Krol, D.M. The luminescence of hexavalent uranium in solids. J. Lumin. 1979, 18-19, 57–62. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Liang, C.-H.; Yan, S.-A.; Chang, Y.-S. Synthesis and Photoluminescence Characteristics of High Color Purity and Brightness Li3Ba2Gd3(MoO4)8:Eu3+ Red Phosphors. J. Phys. Chem. C 2010, 114, 3645–3652. [Google Scholar] [CrossRef]
- Blasse, G.; Grabmaier, B.C. Luminescent Materials; Springer Verlag: Utrecht, The Netherlands, 1994; pp. 91–106. [Google Scholar]
- Bleijenberg, K.C.; Breddels, P.A. On the vibrational structure in the luminescence spectra of uranium-activated sodium fluoride crystals. J. Chem. Phys. 1980, 72, 5390–5398. [Google Scholar] [CrossRef]
- Bleijenberg, K.C. Luminescence properties of uranate centres in solids. In Luminescence and Energy Transfer. Structure and Bonding; Springer Verlag: Utrecht, The Netherlands, 1980; pp. 97–217. [Google Scholar]
- Kawamura, Y.; Sasabe, H.; Adachi, C. Simple Accurate System for Measuring Absolute Photoluminescence Quantum Efficiency in Organic Solid-State Thin Films. Jpn. J. Appl. Phys. 2004, 43, 7729–7730. [Google Scholar] [CrossRef]
Eu3+ Conc. | EQE | CIE1931 Color Coordinate | Luminous Efficacy | |
---|---|---|---|---|
% | (λEx = 338 nm) | x | y | [lm/Wopt] |
0 | 32 | 0.3812 | 0.6119 | 632 |
1 | 39 | 0.4194 | 0.5748 | 576 |
3 | 39 | 0.4655 | 0.5297 | 511 |
5 | 41 | 0.5031 | 0.4931 | 464 |
10 | 42 | 0.5514 | 0.4459 | 405 |
20 | 38 | 0.5921 | 0.4061 | 357 |
40 | 16 | 0.5933 | 0.4048 | 352 |
70 | 2 | 0.5747 | 0.4224 | 364 |
100 | <1 | 0.6079 | 0.3855 | 271 |
Sample (x) | Fraction 1 (%) | τ1 (μs) | Fraction 2 (%) | τ2 (μs) | τ (μs) |
---|---|---|---|---|---|
0 | 100 | 127.5 | |||
1 | 78 | 107.8 | 22 | 186.8 | 125.2 |
3 | 58 | 88.8 | 42 | 163.7 | 120.2 |
5 | 43 | 71.0 | 57 | 146.1 | 113.7 |
10 | 40 | 61.6 | 60 | 144.0 | 111.0 |
20 | 36 | 52.4 | 64 | 138.7 | 108.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Böhnisch, D.; Rosenboom, J.; Jansen, T.; Jüstel, T. Gd3Li3Te2O12:U6+,Eu3+: A Tunable Red Emitting Garnet Showing Efficient U6+ to Eu3+ Energy Transfer at Room Temperature. Inorganics 2018, 6, 84. https://doi.org/10.3390/inorganics6030084
Böhnisch D, Rosenboom J, Jansen T, Jüstel T. Gd3Li3Te2O12:U6+,Eu3+: A Tunable Red Emitting Garnet Showing Efficient U6+ to Eu3+ Energy Transfer at Room Temperature. Inorganics. 2018; 6(3):84. https://doi.org/10.3390/inorganics6030084
Chicago/Turabian StyleBöhnisch, David, Juri Rosenboom, Thomas Jansen, and Thomas Jüstel. 2018. "Gd3Li3Te2O12:U6+,Eu3+: A Tunable Red Emitting Garnet Showing Efficient U6+ to Eu3+ Energy Transfer at Room Temperature" Inorganics 6, no. 3: 84. https://doi.org/10.3390/inorganics6030084
APA StyleBöhnisch, D., Rosenboom, J., Jansen, T., & Jüstel, T. (2018). Gd3Li3Te2O12:U6+,Eu3+: A Tunable Red Emitting Garnet Showing Efficient U6+ to Eu3+ Energy Transfer at Room Temperature. Inorganics, 6(3), 84. https://doi.org/10.3390/inorganics6030084