Metal-Based Compounds: Relevance for the Biomedical Field
Conflicts of Interest
References
- Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A. Latest developments in metal complexes as anticancer agents. Coord. Chem. Rev. 2022, 452, 214307. [Google Scholar] [CrossRef]
- Frei, A.; Verderosa, A.D.; Elliott, A.G.; Zuegg, J.; Blaskovich, M.A.T. Metals to combat antimicrobial resistance. Nat. Rev. Chem. 2023, 7, 202–224. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Shukla, S.; Rattan, R.; Fatima, M.; Goel, M.; Bhat, M.; Dutta, S.; Ranjan, R.K.; Sharma, M. Antimicrobial Agents Based on Metal Complexes: Present Situation and Future Prospects. Int. J. Biomater. 2022, 2022, 6819080. [Google Scholar] [CrossRef] [PubMed]
- Olar, R.; Badea, M.; Chifiriuc, M.C. Metal Complexes—A Promising Approach to Target Biofilm Associated Infections. Molecules 2022, 27, 758. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Sun, D.; Yang, Y.; Li, M.; Li, H.; Chen, L. Discovery of metal-based complexes as promising antimicrobial agents. Eur. J. Med. Chem. 2021, 224, 113696. [Google Scholar] [CrossRef]
- Kumar Singh, A.; Kumar, A.; Singh, H.; Sonawane, P.; Pathak, P.; Grishina, M.; Pal Yadav, J.; Verma, A.; Kumar, P. Metal Complexes in Cancer Treatment: Journey So Far. Chem. Biodivers. 2023, 20, e202300061. [Google Scholar] [CrossRef]
- Adhikari, S.; Nath, P.; Das, A.; Datta, A.; Baildya, N.; Duttaroy, A.K.; Pathak, S. A review on metal complexes and its anti-cancer activities: Recent updates from in vivo studies. Biomed. Pharmacother. 2024, 171, 116211. [Google Scholar] [CrossRef]
- Hu, H.; Xu, Q.; Mo, Z.; Hu, X.; He, Q.; Zhang, Z.; Xu, Z. New anti-cancer explorations based on metal ions. J. Nanobiotechnol. 2022, 20, 457. [Google Scholar] [CrossRef]
- Nayeem, N.; Contel, M. Exploring the Potential of Metallodrugs as Chemotherapeutics for Triple Negative Breast Cancer. Chem.—A Eur. J. 2021, 27, 8891–8917. [Google Scholar] [CrossRef]
- Singh, A.; Barman, P. Recent Advances in Schiff Base Ruthenium Metal Complexes: Synthesis and Applications. Top. Curr. Chem. 2021, 379, 29. [Google Scholar] [CrossRef]
- AlAli, A.; Alkanad, M.; Alkanad, K.; Venkatappa, A.; Sirawase, N.; Warad, I.; Khanum, S.A. A comprehensive review on anti-inflammatory, antibacterial, anticancer and antifungal properties of several bivalent transition metal complexes. Bioorganic Chem. 2025, 160, 108422. [Google Scholar] [CrossRef]
- Afrasiyab.; Zhou, R.; Raziq, K.; Xue, T.; Sun, D. Photodynamic antibacterial therapy by metal complex mediators: A new promise for eliminating drug-Resistant infectious microorganisms. Inorganica Chim. Acta 2025, 587, 122818. [Google Scholar] [CrossRef]
- Nandanwar, S.K.; Kim, H.J. Anticancer and Antibacterial Activity of Transition Metal Complexes. ChemistrySelect 2019, 4, 1706–1721. [Google Scholar] [CrossRef]
- Czyżewska, I.; Mazur, L.; Popiołek, Ł. Transition metal complexes of hydrazones as potential antimicrobial and anticancer agents: A short review. Chem. Biol. Drug Des. 2024, 104, e14590. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, I.; Bashir, M.; Arjmand, F.; Tabassum, S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord. Chem. Rev. 2021, 445, 214104. [Google Scholar] [CrossRef]
- Vitali, V.; Zineddu, S.; Messori, L. Metal compounds as antimicrobial agents: ‘smart’ approaches for discovering new effective treatments. RSC Adv. 2025, 15, 748–753. [Google Scholar] [CrossRef]
- Tyagi, M.; Dubey, M. A fight against cancer with advancement of Schiff base metal complexes: Future prospects. Oral Oncol. Rep. 2025, 13, 100692. [Google Scholar] [CrossRef]
- Peña, Q.; Wang, A.; Zaremba, O.; Shi, Y.; Scheeren, H.W.; Metselaar, J.M.; Kiessling, F.; Pallares, R.M.; Wuttke, S.; Lammers, T. Metallodrugs in cancer nanomedicine. Chem. Soc. Rev. 2022, 51, 2544–2582. [Google Scholar] [CrossRef]
- Rana, M.S.; Rayhan, N.M.A.; Emad, A.H.; Hossain, M.I.; Shah, M.M.; Kudrat-E-Zahan, M.; Hossen, M.F.; Asraf, M.A. Salicylaldehyde-based Schiff bases and their transition metal complexes: An overview on synthesis and biological activities. J. Coord. Chem. 2025, 78, 937–1006. [Google Scholar] [CrossRef]
- Agarwal, P.; Asija, S.; Deswal, Y.; Kumar, N. Recent advancements in the anticancer potentials of first row transition metal complexes. J. Indian Chem. Soc. 2022, 99, 100556. [Google Scholar] [CrossRef]
- Abdolmaleki, S.; Aliabadi, A.; Khaksar, S. Bridging the gap between theory and treatment: Transition metal complexes as successful candidates in medicine. Coord. Chem. Rev. 2025, 531, 216477. [Google Scholar] [CrossRef]
- Karges, J.; Stokes, R.W.; Cohen, S.M. Metal complexes for therapeutic applications. Trends Chem. 2021, 3, 523–534. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, L.C.; Calil, F.A.; Machado-Neto, J.A.; Costa-Lotufo, L.V. DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy. Cancer Genet. 2021, 252–253, 6–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sadler, P.J. Redox-active metal complexes for anticancer therapy. Eur. J. Inorg. Chem. 2017, 2017, 1541–1548. [Google Scholar] [CrossRef]
- Azmanova, M.; Pitto-Barry, A. Oxidative Stress in Cancer Therapy: Friend or Enemy? ChemBioChem 2022, 23, e202100641. [Google Scholar] [CrossRef]
- Topalӑ, T.; Pascual-Álvarez, A.; Moldes-Tolosa, M.A.; Bodoki, A.; Castiñeiras, A.; Torres, J.; Del Pozo, C.; Borrás, J.; Alzuet-Piña, G. New sulfonamide complexes with essential metal ions [Cu (II), Co (II), Ni (II) and Zn (II)]. Effect of the geometry and the metal ion on DNA binding and nuclease activity. BSA protein interaction. J. Inorg. Biochem. 2020, 202, 110823. [Google Scholar] [CrossRef]
- Oveisi Keikha, A.; Shahraki, S.; Dehghanian, E.; Mansouri-Torshizi, H. Effect of central metal ion on some pharmacological properties of new Schiff base complexes. Anticancer, antioxidant, kinetic/thermodynamic and computational studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 325, 125034. [Google Scholar] [CrossRef]
- Andrezalova, L.; Orszaghova, Z. Covalent and noncovalent interactions of coordination compounds with DNA: An overview. J. Inorg. Biochem. 2021, 225, 111624. [Google Scholar] [CrossRef]
- Abdolmaleki, S.; Aliabadi, A.; Khaksar, S. Riding the metal wave: A review of the latest developments in metal-based anticancer agents. Coord. Chem. Rev. 2024, 501, 215579. [Google Scholar] [CrossRef]
- Barone, G.; Terenzi, A.; Lauria, A.; Almerico, A.M.; Leal, J.M.; Busto, N.; García, B. DNA-binding of nickel(II), copper(II) and zinc(II) complexes: Structure–affinity relationships. Coord. Chem. Rev. 2013, 257, 2848–2862. [Google Scholar] [CrossRef]
- Yu, Z.; Cowan, J.A. Metal complexes promoting catalytic cleavage of nucleic acids-biochemical tools and therapeutics. Curr. Opin. Chem. Biol. 2018, 43, 37–42. [Google Scholar] [CrossRef]
- Bera, A.; Sarkar, T.; Upadhyay, A.; Hussain, A. First-row transition metal complexes of naturally occurring anticancer chelators for cancer treatment. Coord. Chem. Rev. 2025, 541, 216847. [Google Scholar] [CrossRef]
- Hrioua, A.; Loudiki, A.; Farahi, A.; Laghrib, F.; Bakasse, M.; Lahrich, S.; Saqrane, S.; El Mhammedi, M.A. Complexation of amoxicillin by transition metals: Physico-chemical and antibacterial activity evaluation. Bioelectrochemistry 2021, 142, 107936. [Google Scholar] [CrossRef]
- Mahmoud, N.F.; Omar, N.R.S.; Mohamed, G.G.; Sayed, F.N. Synthesis, structural characterization and in vitro antibacterial activity studies of ternary metal complexes of anti-inflammatory bromhexine drug. Inorg. Chem. Commun. 2023, 147, 110216. [Google Scholar] [CrossRef]
- Naithani, S.; Sharma, M.; Kumar, S.; Prasher, P. Coordination chemistry of mefenamic acid with bioactive first-row transition metals: Insights into their DNA binding and anticancer potential. Coord. Chem. Rev. 2025, 543, 216943. [Google Scholar] [CrossRef]
- Topalӑ, T.; Bodoki, A.E.; Hangan, A.; Gheorghe-Cetean, S.; Oprean, L. Revisiting therapeutic sulfonamides in the attempt to improve the antimicrobial properties through metal-ion coordination. Farmacia 2019, 67, 749–758. [Google Scholar] [CrossRef]
- Anacona, J.R.; Santaella, J.; Al-shemary, R.K.R.; Amenta, J.; Otero, A.; Ramos, C.; Celis, F. Ceftriaxone-based Schiff base transition metal(II) complexes. Synthesis, characterization, bacterial toxicity, and DFT calculations. Enhanced antibacterial activity of a novel Zn(II) complex against S. aureus and E. coli. J. Inorg. Biochem. 2021, 223, 111519. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Z.; Li, Y.; Wang, Y.; Liu, W. Metal complexes bearing EGFR-inhibiting ligands as promising anticancer agents. Med. Res. Rev. 2024, 44, 1545–1565. [Google Scholar] [CrossRef]
- Boros, E.; Dyson, P.J.; Gasser, G. Classification of Metal-Based Drugs according to Their Mechanisms of Action. Chem 2020, 6, 41–60. [Google Scholar] [CrossRef]
- Zhang, L.; Montesdeoca, N.; Karges, J.; Xiao, H. Immunogenic Cell Death Inducing Metal Complexes for Cancer Therapy. Angew. Chem. Int. Ed. 2023, 62, e202300662. [Google Scholar] [CrossRef]
- Catalano, A.; Sinicropi, M.S.; Iacopetta, D.; Ceramella, J.; Mariconda, A.; Rosano, C.; Scali, E.; Saturnino, C.; Longo, P. A Review on the Advancements in the Field of Metal Complexes with Schiff Bases as Antiproliferative Agents. Appl. Sci. 2021, 11, 6027. [Google Scholar] [CrossRef]
- Temesgen, A.; Ananda Murthy, H.C.; Enyew, A.Z.; Revathi, R.; Venkatesha Perumal, R. Emerging Trends in Metal-based Anticancer Agents: Drug Design to Clinical Trials and their Mechanism of Action. ChemistrySelect 2023, 8, e202302113. [Google Scholar] [CrossRef]
- Psarras, G.I.; Zianna, A.; Hatzidimitriou, A.G.; Psomas, G. Coordination Compounds of Nickel(II) with 3,5–Dibromo–Salicylaldehyde: Structure and Interaction with Biomolecules. Inorganics 2024, 12, 138. [Google Scholar] [CrossRef]
- Banik, S.; Baishya, T.; Gomila, R.M.; Frontera, A.; Barcelo-Oliver, M.; Verma, A.K.; Das, J.; Bhattacharyya, M.K. ‘Charge Reverse’ Halogen Bonding Contacts in Metal-Organic Multi-Component Compounds: Antiproliferative Evaluation and Theoretical Studies. Inorganics 2024, 12, 111. [Google Scholar] [CrossRef]
- Enyedy, É.A.; Giricz, A.; Petrasheuskaya, T.V.; Mészáros, J.P.; May, N.V.; Spengler, G.; Kovács, F.; Molnár, B.; Frank, É. Comparative Solution Equilibrium Studies on Anticancer Estradiol-Based Conjugates and Their Copper Complexes. Inorganics 2024, 12, 49. [Google Scholar] [CrossRef]
- Topală, T.L.; Fizeşan, I.; Petru, A.E.; Castiñeiras, A.; Bodoki, A.E.; Oprean, L.S.; Escolano, M.; Alzuet-Piña, G. Evaluation of DNA and BSA-Binding, Nuclease Activity, and Anticancer Properties of New Cu(II) and Ni(II) Complexes with Quinoline-Derived Sulfonamides. Inorganics 2024, 12, 158. [Google Scholar] [CrossRef]
- Altowyan, M.S.; El-Faham, A.; Hassan, M.; Barakat, A.; Haukka, M.; Abu-Youssef, M.A.M.; Soliman, S.M.; Yousri, A. Structural and Biological Comparative Studies on M(II)-Complexes (M = Co, Mn, Cu, Ni, Zn) of Hydrazone-s-Triazine Ligand Bearing Pyridyl Arm. Inorganics 2024, 12, 268. [Google Scholar] [CrossRef]
- Kadomtseva, A.V.; Mochalov, G.M.; Zasovskaya, M.A.; Ob’edkov, A.M. Synthesis, Structure, and Biological Activity of the Germanium Dioxide Complex Compound with 2-Amino-3-Hydroxybutanoic Acid. Inorganics 2024, 12, 83. [Google Scholar] [CrossRef]
- Tutar, U.; Çelik, C.; Üstün, E.; Özdemir, N.; Şahin, N.; Sémeril, D.; Gürbüz, N.; Özdemir, İ. Benzimidazol-2-ylidene Silver Complexes: Synthesis, Characterization, Antimicrobial and Antibiofilm Activities, Molecular Docking and Theoretical Investigations. Inorganics 2023, 11, 385. [Google Scholar] [CrossRef]
- Pissarro, T.; Malta-Luís, C.; Ferreira, L.; Pimentel, C.; Lima, L.M.P. Synthesis, Copper(II) Binding, and Antifungal Activity of Tertiary N-Alkylamine Azole Derivatives. Inorganics 2024, 12, 242. [Google Scholar] [CrossRef]
- Varbanov, H.P.; Belaj, F.; Glasnov, T.; Herbert, S.; Brumby, T.; Mösch-Zanetti, N.C. Neutral W(V) Complexes Featuring the W2O2(µ-O)2 Core and Amino Acids or EDTA Derivatives as Ligands: Synthesis and Structural Characterization. Inorganics 2023, 11, 114. [Google Scholar] [CrossRef]
- González-Garibay, A.S.; Vallejo-Cardona, A.A.; Villarreal-Amézquita, A.A.; Sánchez-Hernández, I.M.; Torres-González, O.R.; Padilla-Camberos, E. The In Vitro Cytotoxic Potential of Biosynthesized Silver Nanoparticles in MIA PaCa-2 Cells Supported with an In Silico Study. Inorganics 2024, 12, 317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topală, T.L.; Bodoki, A.E.; Oprean, L.S. Metal-Based Compounds: Relevance for the Biomedical Field. Inorganics 2025, 13, 282. https://doi.org/10.3390/inorganics13090282
Topală TL, Bodoki AE, Oprean LS. Metal-Based Compounds: Relevance for the Biomedical Field. Inorganics. 2025; 13(9):282. https://doi.org/10.3390/inorganics13090282
Chicago/Turabian StyleTopală, Tamara Liana, Andreea Elena Bodoki, and Luminița Simona Oprean. 2025. "Metal-Based Compounds: Relevance for the Biomedical Field" Inorganics 13, no. 9: 282. https://doi.org/10.3390/inorganics13090282
APA StyleTopală, T. L., Bodoki, A. E., & Oprean, L. S. (2025). Metal-Based Compounds: Relevance for the Biomedical Field. Inorganics, 13(9), 282. https://doi.org/10.3390/inorganics13090282