Application of Fluorescent Probes for the Detection of Zinc Ions in Cells and Oil Paintings
Abstract
:1. Introduction
2. Detection Mechanism of Fluorescent Probes
2.1. Light-Induced Electron Transfer
2.2. Fluorescence Resonance Energy Transfer
2.3. Intramolecular Charge Transfer
2.4. Other Mechanisms
3. Fluorescent Probe to Detect Zinc Ions
3.1. Coumarin-Based Fluorescent Probes
3.2. Schiff Base Fluorescent Probes
3.3. Rhodamine Fluorescent Probes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, L.; Zhang, S.; Fan, M.; Wang, D.; Li, N. Environmental pollution analysis based on the luminescent metal organic frameworks: A review. J. TRAC-Trends Anal. Chem. 2021, 134, 116131. [Google Scholar] [CrossRef]
- Luca, B.; Erica, C.; Fabio, M.D.; Paolo, P. Metal Nanostructures for Environmental Pollutant Detection Based on Fluorescence. Nanomaterials 2021, 11, 276. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, Y.; Yang, J.; Hu, S. Preparation of LiLu(MoO4)2: Eu3+ and Its Fluorescence Detection for Fe3+ Ions. J. Liaocheng Univ. (Nat. Sci. Ed.) 2024, 37, 64–69. [Google Scholar]
- Wang, Z.y.; Wang, D.; Hu, S.; Yang, J. Hydrothermal Synthesis of SrF2:Tb3+ for Selective Detection of Fe3+ Ions. J. Liaocheng Univ. (Nat. Sci. Ed.) 2023, 36, 35–40. [Google Scholar]
- Huang, P.; Wang, X.; Hao, Q.; Zhou, J.; Xu, C. Preparation of 3D Hierarchical Molybdenum-Polydopamine Microflowers as Cathode for Aqueous Zinc-Ion Batteries with Large Voltage Range. J. Liaocheng Univ. 2023, 36, 85–92. [Google Scholar]
- Wang, Y.; Lao, S.; Ding, W.; Zhang, Z.; Liu, S. A novel ratiometric fluorescent probe for detection of iron ions and zinc ions based on dual-emission carbon dots. Sens. Actuators B Chem. 2019, 284, 186–192. [Google Scholar] [CrossRef]
- Han, H.; Liu, Y.R.; Dong, C.; Han, X.E. Novel ratio fluorescence probes for selectively detecting zinc ion based on Y-type quinoxaline framework. J. Lumin. 2017, 183, 513–518. [Google Scholar] [CrossRef]
- Devender, S.; Sarika, T.; Sweta, S.; Garima, C.; Amit, P.S.; Rajeev, G. A fluorescent pH switch probe for the ‘turn-on’ dual-channel discriminative detection of magnesium and zinc ions. J. Photochem. Photobiol. A Chem. 2023, 435, 114334. [Google Scholar]
- Lu, Z.; Lu, Y.; Fan, W.; Fan, C.; Li, Y. Ultra-fast zinc ion detection in living cells and zebrafish by a light-up fluorescent probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 206, 295–301. [Google Scholar] [CrossRef]
- Markovich, J.R.; Margarita, K.; Maksim, S.; Marianna, Z.; Elena, K.; Kristina, K.; Alexander, G.; Anton, B.; Nicolas, B. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022, 10, 1072. [Google Scholar] [CrossRef]
- Naeun, Y.; Hyunbeom, L.; Geonhee, L.; Eun, H.; Kim, E.H.; Kim, S.H.; Lee, J.-O.; Yunseon, S.; Jinyoung, P.; So-Dam, K.; et al. A Metabolomics Investigation of the Metabolic Changes of Raji B Lymphoma Cells Undergoing Apoptosis Induced by Zinc Ions. Metabolites 2021, 11, 689. [Google Scholar]
- Zhang, D.Y.; Azrad, M.; Demark-Wahnefried, W.; Frederickson, C.J.; Lippard, S.J.; Radford, S.J. Peptide-based, two-fluorophore, ratiometric probe for quantifying mobile zinc in biological solutions. ACS Chem. Biol. 2015, 10, 385–389. [Google Scholar] [CrossRef]
- Zhao, C.y.; Xe, X.; Wan, S.; Jin, C.; Zhao, L.; Yan, B. Covalent Organic Framework Modified Polyaniline Electrospun Nanofiber Membrane for Electrochemical Detecting of Pb2+. J. Liaocheng Univ. (Nat. Sci. Ed.), 2023; 36, 74–81. [Google Scholar]
- Long, T.; Wang, Z.; He, Y.; Fang, J.; Feng, J.; Sun, Q. Synergistic Effects of Pollutant Purification and Heavy Metal Reduction in Photocatalytic Fuel Cells. J. Liaocheng Univ. 2023, 36, 45–56. [Google Scholar]
- Nasar, A.; Rizwan, A.A.Z.U.; Baig, M.A. Laser ionization time of flight mass spectrometer for isotope mass detection and elemental analysis of materials. Laser Phys. 2017, 27, 086001. [Google Scholar]
- Lou, C.; Guo, D.; Wang, N.; Wu, S.; Zhang, P.; Zhu, Y. Detection of trace fluoride in serum and urine by online membrane-based distillation coupled with ion chromatography. J. Chromatogr. A 2017, 1500, 145–152. [Google Scholar] [CrossRef]
- Du, H.; Yang, J.; Hu, S. Upconversion luminescence and Temperature Sensing Properties of Yb3+/Ho3+ Co-Doped Sc2W3O12 Phosphors. J. Liaocheng Univ. 2024, 37, 42–49. [Google Scholar]
- Han, M.; Cao, M.; Duan, W.; Gong, S. Two Birds with One Stone: Quantitative and Enantioselective Recognition of Amino Acids Using One Molecule with Dual-Wavelength Emission. J. Liaocheng Univ. (Nat. Sci. Ed.) 2023, 36, 96–110. [Google Scholar]
- Panicker, R.R.; Joseph, S.; Dharani, S.; John, M.L.; Kuriappan, A.T.; Abraham, J.T.; Majeed, S.A.; Pavankumar, B.B.; Kumar, S.A.; Sivaramakrishna, A. A highly lipophilic terpyridine ligand as an efficient fluorescent probe for the selective detection of zinc(II) ions under biological conditions. Anal. Methods 2024, 17, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Fuentes, P.; Wrobel, A.T.; Zastrow, M.L.; Khan, M.; Georgiou, J.; Luyben, T.T.; Roder, J.C.; Okamoto, K.; Lippard, S.J. A far-red emitting probe for unambiguous detection of mobile zinc in acidic vesicles and deep tissue. Chem. Sci. 2015, 6, 1944–1948. [Google Scholar] [CrossRef]
- Johnsi, M.; Hehua, L.; Jianhua, G.; Arun, R.C.; Jia, S. Fluorescent Aptaswitch for Detection of Lead Ions. ACS Appl. Bio Mater. 2022, 5, 5089–5093. [Google Scholar]
- Caiping, D.; Tianbing, R. Near infrared fluorescent probes for detecting and imaging active small molecules. Coord. Chem. Rev. 2023, 482, 215080. [Google Scholar]
- Liu, C.; Liu, K.; Tian, M.; Lin, W. A ratiometric fluorescent probe for hydrazine detection with large fluorescence change ratio and its application for fluorescence imaging in living cells. Spectrochim Acta Part A Mol Biomol Spectrosc. 2018, 212, 42–47. [Google Scholar] [CrossRef]
- Goldberg, J.M.; Wang, F.; Sessler, C.D.; Vogler, N.W.; Zhang, D.Y.; Loucks, W.H.; Tzounopoulos, T.; Lippard, S.J. Photoactivatable sensors for detecting mobile zinc. J. Am. Chem. Soc. 2018, 140, 2020–2023. [Google Scholar] [CrossRef] [PubMed]
- Strianese, M.; Milione, S.; Bertolasi, V.; Pellecchia, C.; Grassi, A. Heteroscorpionate-based Co2+, Zn2+, and Cu2+ complexes: Coordination behavior, aerobic oxidation, and hydrogen sulfide detection. Inorg. Chem. 2011, 50, 900–910. [Google Scholar] [CrossRef]
- Yu, J.; Yu, H.; Wang, S.; Qi, Y. Progress in research of zinc ion fluorescent probes for biological imaging. J. Lumin. 2024, 266, 120318. [Google Scholar] [CrossRef]
- Demchenko, A.P. Introduction to Fluorescence Sensing: Volume 2: Target Recognition and Imaging; Springer: Berlin, Germany, 2023. [Google Scholar]
- Rather, S.R.; Scholes, G.D. From fundamental theories to quantum coherences in electron transfer. J. Am. Chem. Soc. 2018, 141, 708–722. [Google Scholar] [CrossRef]
- Kim, H.; Choi, H.S.; Eom, J.B.; Choi, Y. Mini-platform for off–on near-infrared fluorescence imaging using peptide-targeting ligands. Bioconjugate Chem. 2020, 31, 721–728. [Google Scholar] [CrossRef]
- Niu, H.; Liu, J.; O’Connor, H.M.; Gunnlaugsson, T.; James, T.D.; Zhang, H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem. Soc. Rev. 2023, 52, 2322–2357. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Daga, P.; Dey, N. Exploring various photochemical processes in optical sensing of pesticides by luminescent nanomaterials: A Concise discussion on challenges and recent advancements. ACS Omega 2023, 8, 44395–44423. [Google Scholar] [CrossRef]
- Mu, X.Q.; Wang, D.; Meng, L.Y.; Wang, Y.Q.; Chen, J. Glutathione-modified graphene quantum dots as fluorescent probes for detecting organophosphorus pesticide residues in radix angelica sinensis. Spectrochim Acta A 2023, 286, 122021. [Google Scholar] [CrossRef]
- Garimell, L.; Dhiman, T.K.; Kumar, R.; Singh, A.K.; Solanki, P.R. One-step synthesized ZnO np-based optical sensors for detection of aldicarb via a photoinduced electron transfer route. ACS Omega 2020, 5, 2552–2560. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.; Srinivas, G.; Bagchi, B. Distance and orientation dependence of excitation energy transfer: From molecular systems to metal nanoparticles. J. Phys. Chem. B 2009, 113, 1817–1832. [Google Scholar] [CrossRef]
- Loas, A.; Radford, R.J.; Lippard, S.J. Addition of a second binding site increases the dynamic range but alters the cellular localization of a red fluorescent probe for mobile zinc. Inorg. Chem. 2014, 53, 6491–6493. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.C.M.; Barbieri, M.V.; Chino, M.; Manco, G.; Febbraio, F. A FRET approach to detect paraoxon among organophosphate pesticides using a fluorescent biosensor. Sensors 2022, 22, 561. [Google Scholar] [CrossRef]
- Yu, Y.; Ye, S.; Sun, Z.; You, J.; Li, W.; Song, Y.; Zhang, H. A fluorescent aptasensor based on gold nanoparticles quenching the fluorescence of rhodamine B to detect acetamiprid. RSC Adv. 2022, 12, 35260–35269. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Huang, G.; Jiang, G.; Jiang, G.; Dauda, S.A.A.; Pi, F. Direct phoxim sensing based on fluorescent metal-organic framework of Nu-1000 induced FRET. Food Biosci. 2023, 55, 102967. [Google Scholar] [CrossRef]
- Li, Z.; Luo, L.; Chen, C.; Li, Q.; Zhao, Q.; Mari, G.M.; Xing, C.; Xia, X.F.; Shen, J.Z.; Yu, X.Z.; et al. Environment-friendly dual-mode immunoassay based on the inner filter effect of polydopamine-polyethylenimine copolymer nanoparticles for the highly sensitive detection of norfloxacin. Food Chem. 2025, 480, 143928. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jia, Y.; Feng, Z.; Liu, F. A highly sensitive and selective fluorescent probe without quencher for detection of Pb2+ ions based on aggregation-caused quenching phenomenon. RSC Adv. 2018, 8, 38929–38934. [Google Scholar] [CrossRef]
- Liu, W.J.; Zheng, P.; Xia, Y.X.; Li, F.; Zhang, M. A simple AIE probe to pesticide trifluralin residues in aqueous phase: Ultra-fast response, high sensitivity, and quantitative detection utilizing a portable platform. Talanta 2024, 269, 125352. [Google Scholar] [CrossRef]
- Li, J.; Zhong, K.; Tang, L.; Yan, X. A triphenylamine derived fluorescent probe for efficient detection of H2S based on aggregation-induced emission. New J. Chem. 2021, 45, 13399–13405. [Google Scholar] [CrossRef]
- Yilmaz, M.D.; Kocak, H.S.; Kara, H.K. A BODIPY-based ICT probe for ratiometric and chromo-fluorogenic detection of hazardous oxalyl chloride. Spectrochim. Acta Part A Mol Biomol. Spectrosc. 2023, 284, 121828. [Google Scholar]
- Wen, J.; Hua, Q.; Ding, S.; Sun, A.; Xia, Y. Recent advances in fluorescent probes for zinc ions based on various response mechanisms. Crit. Rev. Anal. Chem. 2024, 54, 3313–3344. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, W.; Zhuang, X.Q.; Wang, F.; Wang, P.F.; Tao, S.L.; Zhang, X.H.; Wu, S.K.; Lee, S.T. Fluorescence turn on of coumarin derivatives by metal cations: A new signaling mechanism based on C=N isomerization. Org. Lett. 2007, 9, 33–36. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Ming, Z.Z.; Hao, G.F.; Yang, W.C.; Yang, G.F. Coumarin-based novel fluorescent zinc ion probe in aqueous solution. Tetrahedron 2013, 69, 4743–4748. [Google Scholar] [CrossRef]
- Woo, H.; You, Y.; Kim, T.; Jhon, G.J.; Nam, W. Fluorescence ratiometric zinc sensors based oncontrolled energy transfer. J. Mater. Chem. 2012, 22, 17100–17112. [Google Scholar] [CrossRef]
- Zastrow, M.L.; Huang, Z.; Lippard, S.J. HaloTag-based hybrid targetable and ratiometric sensors for intracellular zinc. ACS Chem. Biol. 2020, 15, 396–406. [Google Scholar] [CrossRef]
- Wu, G.; Gao, O.; Li, M.; Tang, X.; Lai, K.W.C.; Tong, Q. A Ratiometric Probe Based on Coumarin-Quinolinefor Highly Selective and Sensitive Detection of Zn2+ lons in Living Cells. J. Photochem. Photobiol. A Chem. 2017, 355, 487–495. [Google Scholar] [CrossRef]
- Qin, J.; Fan, L.; Yang, Z.Y. A small-molecule and resumable two-photon fluorescent probe for Zn2+ based on a coumarin Schiff-base. Sens. Actuators B Chem. 2016, 228, 156–161. [Google Scholar] [CrossRef]
- Yasuhiro, S.S.; Takayuki, H. Mechanism for Different Fluorescence Response of a Coumarin-Amide-Dipicolylamine Linkage to Zn(II) and Cd(II) in Water. J. Phys. Chem. A 2013, 117, 1474–1482. [Google Scholar]
- Liu, H.Y.; Dong, Y.S.; Zhang, B.B.; Liu, F.; Tan, C.; Tan, Y.; Jiang, Y. An Efficient Quinoline-based Fluorescence Sensor for Zinc(II) and Its Application in Live-cell Imaging. Sens. Actuators B Chem. 2016, 234, 616–624. [Google Scholar] [CrossRef]
- Gandin, A.; Brigo, L.; Giacomazzo, S.; Torresan, V.; Brusatin, G.; Franco, A. Reversible fluorescent solid porous films for detection of zinc ions in biological media. J. Biol. Eng. 2025, 19, 17. [Google Scholar] [CrossRef]
- Mameli, M.; Aragoni, M.C.; Arca, M.; Atzori, M.; Bencini, A.; Bazzicalupi, C.; Blake, A.J.; Caltagirone, C.; Devillanova, F.A.; Garau, A.; et al. Synthesis and coordination properties of quinoline pendant arm derivatives of [9] aneN3 and [9] aneN2S as fluorescent zinc sensors. Inorg. Chem. 2009, 48, 9236–9249. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, J.; Li, D.H.; Liu, L.; Wang, H. Preparation 4′-Quinolin-2-yl-[2, 2′; 6′, 2”] Terpyridine as a Ratiometric Fluorescent Probe for Cadmium Ions and Zinc Ions in Aqueous. J. Photochem. Photobiol. A Chem. 2020, 399, 112613. [Google Scholar] [CrossRef]
- Mu, X.Y.; Shi, L.P.; Yan, L.Q.; Tang, N. A 2-Hydroxy-1-naphthaldehyde Schiff Base for turn-on Fluorescence Detection of Zn2+ Based on PET Mechanism. J. Fluoresc. 2021, 31, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Q.; Liu, Y.; Wu, X.D.; Li, Y.; Du, J.; Qi, S.; Yang, Q.; Xu, H.; Li, Y. A Novel Near-infrared Fluorescent Probe for Zn2+ and CN– Double Detection Based on Dicyanoisfluorone Derivatives with Highly Sensitive and Selective, and Its Application in Bioimaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 267, 120621. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.H.; Qi, J.; Sun, Y.; Pei, P.X. A New Fluorescence Chemosensor Based on Benzothiazole Derivative for Zn2+ and Its Logic Gate Behavior. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 565–569. [Google Scholar] [CrossRef]
- Wu, Q.; Feng, L.H.; Chao, J.B.; Wang, Y.; Shuang, S. Ratiometric Sensing of Zn2+ with A New Benzothiazole-based Fluorescent Sensor and Living Cell Imaging. Analyst 2021, 146, 4348–4356. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.Y.; Chen, X.L.; Yang, X.J.; Xu, H.; Huang, Y.L.; Zhang, X.; Redshaw, C.; Zhang, Q.L. A highly selective turn-on fluorescent probe for the detection of zinc. Molecules. 2021, 26, 3825. [Google Scholar] [CrossRef]
- Li, W.Y.; Liu, Z.C.; Fang, B.Q.; Jin, M.; Tian, Y. Two-photon fluorescent Zn2+ probe for ratiometric imaging and biosensing of Zn2+ in living cells and larval zebrafish. Biosens. Bioelectron. 2020, 148, 111666. [Google Scholar] [CrossRef]
- Jung, S.H.; Kwona, K.Y.; Jung, J. HA turn-on fluorogenic Zn(II) chemoprobe based on a terpyridine derivative with aggregation-induced emission (AIE) effects through nanofiber aggregation into spherical aggregates. Chem. Commun. 2015, 51, 952–955. [Google Scholar] [CrossRef]
- Pasha, S.S.; Hare, R.Y.; Choudhury, A.R.; Laskar, I.R. Synthesis of an aggregation-induced emission(AIE) active salicylaldehyde based Schiff base: Study of mechanoluminescence and sensitive Zn(II) sensing. J. Mater. Chem. C. 2017, 5, 9651–9658. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, Z.; Lv, Y. Application of the rhodamine derivative LPDQ fluorescent probe for the detection of zinc white in oil paints. AIP Adv. 2024, 14, 035022. [Google Scholar] [CrossRef]
- Jin, L.; Liu, H.; Wang, Z. Study on the Properties of rhodamine B fluorescent probe Y2ST. J. Indian Chem. Soc. 2024, 101, 101420. [Google Scholar] [CrossRef]
- Xue, J.; Tian, L.; Yang, Z. A novel rhodamine-chromone Schiff-base as turn-on fluorescent probe for the detection of Zn (II) and Fe (Ⅲ) in different solutions. J. Photochem. Photobiol. A Chem. 2019, 369, 77–84. [Google Scholar] [CrossRef]
- Wechakorn, K.; Suksen, K.; Piyachaturawat, P.; Kongsaeree, P. Rhodamine-based fluorescent and colorimetric sensor for zinc and its application in bioimaging. Sens. Actuators B Chem. 2016, 228, 270–277. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, X.J.; Zhu, Y.Y.; Zhou, B.J.; Zang, S.Q.; Tang, M.S.; Zhang, H.Y.; Mak, T.C. A new fluorescent probe for Al3+ based on rhodamine 6G and its application to bioimaging. Dalton Trans. 2014, 43, 12624–12632. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, P.; Ramakrishnan, V.T.; Ramamurthy, P. Photoinduced Electron Transfer (PET) Based Zn2+ Fluorescent Probe: Transformation of Turn-On Sensors into Ratiometric Ones with Dual Emission in Acetonitrile. J. Phys. Chem. A. 2011, 115, 14292–14299. [Google Scholar] [CrossRef]
- Burdette, S.C.; Walkup, G.K.; Spingler, B.; Tsien, R.Y.; Lippard, S.J. Fluorescent Sensors for Zn2+ Based on a Fluorescein Platform: Synthesis, Properties and Intracellular Distribution. J. Am. Chem. Soc. 2001, 123, 7831–7841. [Google Scholar] [CrossRef]
- Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang, Z.; Wang, J.; Cui, A.; Gao, Y. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn (II) in living cells. Org. Biomol. Chem. 2005, 3, 1387–1392. [Google Scholar] [CrossRef]
- Yan, L.q.; Yang, H.; Li, J.; Zhou, C.; Li, L.; Wu, X.; Lei, C. A near infrared fluorescent probe for detection and bioimaging of zinc ions and hypochlorous acid. Anal. Chim. Acta. 2022, 1206, 339750. [Google Scholar] [CrossRef]
- Wang, J.T.; Pei, Y.Y.; Yan, M.Y.; Li, Y.G.; Yang, G.G.; Qu, C.H.; Luo, W.; Wang, J.; Li, Q.F. A fast-response turn-on quinoline-based fluorescent probe for selective and sensitive detection of zinc (II) and its application. Microchem. J. 2021, 160, 105776. [Google Scholar] [CrossRef]
- Yan, L.; Zhou, C.; Li, J.; Yang, H.; Wu, X.; Li, L. A near-infrared fluorescent probe based on Dicyanisophorone for the detection of zinc ions (Zn2+) in Water and living cells. J. Fluoresc. 2023, 33, 201–207. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Rong, X.; Qiu, X.; Sun, L.; Cheng, Y. Development of a novel near-infrared fluorescent probe for selective detection of zinc ions in environmental and food samples. Tetrahedron Lett. 2023, 129, 154713. [Google Scholar] [CrossRef]
- Roy, S.; Pan, S.; Sivaram, S.; De, P. Naphthalimide-based fluorescent polymeric probe: A dual-phase sensor for formaldehyde detection. Sci. Technol. Adv. Mater. 2025, 26, 2469493. [Google Scholar] [CrossRef]
- Lu, W.; Chen, J.; Tang, J.; Ma, Y.; Sang, W.; Feng, S.; Yang, S.; Wang, Y.; Li, X. Quantitative Detection of Zn2+ in Infant Formula and Living Cells Using Quinoline-Based Fluorescent Probes. Food Anal. Methods 2025, 18, 190–201. [Google Scholar] [CrossRef]
- Gao, Y.; Chang, D.; Luo, Y.; Yu, H.; Li, J.; Liu, K. Synthesis of an Antipyrine-Based Fluorescent Probe with Synergistic Effects for the Selective Recognition of Zinc Ion. Minerals 2024, 14, 649. [Google Scholar] [CrossRef]
- Li, J.; Zhou, C.; Yang, H.; Wu, X.; Yan, L. Two near-infrared fluorescent probes based on dicyanoisfluorone for rapid monitoring of Zn2+ and Pb2+. Methods Appl. Fluoresc. 2022, 10, 035010. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jiang, T.; Lin, Z.; Yu, H.; Wang, S.; Qi, Y. Two novel pyrene-based Schiff base fluorescent probes for the turn-on detection of Zn2+ and their application in bioimaging. Microchem. J. 2025, 209, 112715. [Google Scholar] [CrossRef]
- Wang, N.; Ga, L.; Ai, J. Synthesis of fluorescent BSA templated silver nanomaterials and it’s application of detection of Zn2+ and Co2+. Mater. Res. Express 2018, 5, 105703. [Google Scholar] [CrossRef]
- Gan, X.; Sun, P.; Li, H.; Tian, X.; Zhang, B.; Wu, J.; Tian, Y.; Zhou, H. A conveniently prepared and hypersensitized small molecular fluorescent probe: Rapidly detecting free zinc ion in HepG2 cells and Arabidopsis. Biosens. Bioelectron. 2016, 86, 393–397. [Google Scholar] [CrossRef]
- Jović, M.; Marković, O.; Newhouse, T.R.; Opsenica, I.M.; Selaković, Ž. A highly selective ESIPT-mechanism-based, ratiometric fluorescent sensor for zinc ions. Dye. Pigment. 2025, 234, 112547. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, A.; Singh, M.K.; Sahu, S.K.; John, R.P. A novel benzidine based Schiff base “turn-on” fluorescent chemosensor for selective recognition of Zn2+. Sens. Actuators B Chem. 2017, 241, 1218–1223. [Google Scholar] [CrossRef]
- Erdemir, S.; Malkondu, S.; Kocyigit, O. A reversible calix [4] arene armed phenolphthalein based fluorescent probe for the detection of Zn2+ and an application in living cells. Luminescence 2019, 34, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zou, Y.; Liu, J. A single 8-hydroxyquinoline-appended bile acid fluorescent probe obtained by click chemistry for solvent-dependent and distinguishable sensing of zinc (II) and cadmium (II). Luminescence 2024, 39, e4610. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Li, Y.; Zhang, C.; Huang, J.; Sun, Q. A thiazolo [4, 5-b] pyridine-based fluorescent probe for detection of zinc ions and application for in vitro and in vivo bioimaging. Talanta 2018, 185, 396–404. [Google Scholar] [CrossRef]
- Zhang, W.X.; Chen, W.; Jiang, C.; Lu, H. A turn-on near-infrared fluorescent probe with rapid response and large Stokes shift for the selective and sensitive detection of zinc (II) and its application in living cells. Anal. Methods 2019, 11, 2396–2403. [Google Scholar] [CrossRef]
- Wang, P.; Wu, J. Highly selective and sensitive detection of Zn (II) and Cu (II) ions using a novel peptide fluorescent probe by two different mechanisms and its application in live cell imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 208, 140–149. [Google Scholar] [CrossRef]
- Zou, W.; Gong, F.; Chen, X.; Cao, Z.; Xia, J.; Gu, T.; Li, Z. Intrinsically fluorescent and highly functionalized polymer nanoparticles as probes for the detection of zinc and pyrophosphate ions in rabbit serum samples. Talanta 2018, 188, 203–209. [Google Scholar] [CrossRef]
Probe Name | λ_ex/λ_em | LOD | Mechanism | F/F0 | Ref. |
---|---|---|---|---|---|
L2 | 400 nm/480 nm | 84 nM | Formation of bis-terpyridine zinc complexes (L2-Zn2+) | Increase significantly | [19] |
Probe 1 | 482 nm/653 nm | 15.3 nM | PET, ICT | Increase significantly | [72] |
QCPCH | 375 nm/484 nm | 72nm | CHEF, PET | Increase significantly (101 times) | [73] |
NIR-Zn | 481 nm/660 nm | 4.8 nM | PET | Increase significantly | [74] |
TZn | 580nm/652 nm | 0.31 μM | Chelation | Increase significantly | [75] |
DCP5 | 420 nm/580 nm | 1.36 nM | PET | Increase significantly | [76] |
QSP-H/ QSP-Cl | 385 nm/499.5 nm 388 nm/500 nm | 71 nM/ 67 nM | Chelation | Increase significantly | [77] |
P2 | 352 nm/462 nm | 0.63 µM | PET, ESIPT, Synergistic effects of E/Z isomerization | Increase significantly (7 times) | [78] |
Probe 1/ Probe 2 | 490 nm/670 nm 520 nm/670 nm | 1.59 nM/ 2.7 nm | PET | Increase significantly | [79] |
Py-Ph/Py-Nap | 355 nm/469 nm 355 nm/502 nm | 29.2 nM/ 24.6 nM | 1:1 complexation | Increase significantly | [80] |
BSA-AgNPs | 389 nm/502 nm | 100 µM | Zn2+ leads to some degree of aggregation of BSA-AgNPs | Increase significantly (42.1%) | [81] |
Probe for zinc ions detection | 406 nm/490 nm | 5.8 nM | PET | Increase significantly (65 times) | [82] |
Compound 6 | 360 nm/460 nm | 1.26 × 10⁻⁶ M | ESIPT | Increase significantly | [83] |
H2L | 430 nm/509 nm | 8.6 × 10⁻⁹ M | Inhibition of C=N bond isomerization | Increase significantly (54 times) | [84] |
DCDs | 400 nm/655 nm | 1.2 µmol·L⁻1 | Zn2+ interaction with DCDs | Increase significantly | [6] |
C4P | 365 nm/440 nm | 0.108 µM | PET | Increase significantly (120 times) | [85] |
DCQO | 320 nm/470 nm | 0.40 µM | ICT | Increase significantly (7.9 times) | [86] |
2-HPTP | 425 nm/510 nm | 3.48 × 10−7 M | 1:1 compatibilizer | Increase significantly (135 times) | [87] |
YPT | 502 nm/670 nm | 12 nM | PET | Increase significantly | [88] |
L | 330 nm/515 nm | 4.9 nM | PET | Increase significantly (5 times) | [89] |
F-PNPs | 445 nm/502 nm | 2.75 × 10−8 M/L | Zn2+ coordination with substances, F-PNPs-Zn2+ complexes | Increase significantly | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Ren, Z.; Niu, Y.; Cao, X.; Lv, Y. Application of Fluorescent Probes for the Detection of Zinc Ions in Cells and Oil Paintings. Inorganics 2025, 13, 124. https://doi.org/10.3390/inorganics13040124
Wang Z, Ren Z, Niu Y, Cao X, Lv Y. Application of Fluorescent Probes for the Detection of Zinc Ions in Cells and Oil Paintings. Inorganics. 2025; 13(4):124. https://doi.org/10.3390/inorganics13040124
Chicago/Turabian StyleWang, Zhankun, Zhixin Ren, Yanan Niu, Xi Cao, and Yuguang Lv. 2025. "Application of Fluorescent Probes for the Detection of Zinc Ions in Cells and Oil Paintings" Inorganics 13, no. 4: 124. https://doi.org/10.3390/inorganics13040124
APA StyleWang, Z., Ren, Z., Niu, Y., Cao, X., & Lv, Y. (2025). Application of Fluorescent Probes for the Detection of Zinc Ions in Cells and Oil Paintings. Inorganics, 13(4), 124. https://doi.org/10.3390/inorganics13040124