Featured Papers in Inorganic Materials 2024
1. Introduction
2. An Overview of the Published Articles
2.1. Storage and Delivery of Renewable Energy: Hydrogen-Based Technology
2.2. Environmental Remediation
2.3. Development of Inorganic Materials with Enhanced Optical and Thermal Properties
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Nisticò, R.; Idriss, H.; Carlos, L.; Aneggi, E.; Jensen, T.R. 10th Anniversary of Inorganics: Inorganic Materials. Inorganics 2024, 12, 62. [Google Scholar] [CrossRef]
- Jacobs, P.A.; Dusselier, M.; Sels, B.F. Will Zeolite-Based Catalysis be as Relevant in Future Biorefineries as in Crude Oil Refineries? Angew. Chem. Int. Ed. 2014, 53, 8621–8626. [Google Scholar] [CrossRef]
- Chakravorty, A.; Roy, S. A review of photocatalysis, basic principles, processes, and materials. Sustain. Chem. Environ. 2024, 8, 100155. [Google Scholar] [CrossRef]
- Lei, Y.; Niu, Y.; Tang, X.; Yu, X.; Huang, X.; Lin, X.; Yi, H.; Zhao, S.; Jiang, J.; Zhang, J.; et al. Cu-based materials for electrocatalytic CO2 to alcohols: Reaction mechanism, catalyst categories, and regulation strategies. J. Energy Chem. 2024, 97, 593–611. [Google Scholar] [CrossRef]
- Chatenet, M.; Pollet, B.G.; Dekel, D.R.; Dionigi, D.; Deseure, J.; Millet, P.; Braatz, R.D.; Bazant, M.Z.; Eikerling, M.; Staffell, I.; et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar] [CrossRef]
- Li, F.; Zeng, Q.; Li, J.; Hao, X.; Ho-Baille, A.; Tang, J.; Green, M.A. Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies. Mater. Today 2020, 41, 120–142. [Google Scholar] [CrossRef]
- Oh, S.M.; Patil, S.B.; Jin, X.; Hwang, S.-J. Recent Applications of 2D Inorganic Nanosheets for Emerging Energy Storage System. Chem. Eur. J. 2018, 24, 4757–4773. [Google Scholar] [CrossRef]
- Man, X.; Lu, H.; Xu, Q.; Wang, C.; Ling, Z. Review on the thermal property enhancement of inorganic salt hydrate phase change materials. J. Energy Storage 2023, 72, 108699. [Google Scholar] [CrossRef]
- Vitillo, J.G. Magnesium-based systems for carbon dioxide capture, storage and recycling: From leaves to synthetic nanostructured materials. RSC Adv. 2015, 5, 36192–36239. [Google Scholar] [CrossRef]
- Sarkar, S.; Das, R.; Choi, H.; Bhattacharjee, C. Involvement of process parameters and various modes of application of TiO2 nanoparticles in heterogeneous photocatalysis of pharmaceutical wastes—A short review. RSC Adv. 2014, 4, 57250–57266. [Google Scholar] [CrossRef]
- Cho, M.-S.; Younis, S.A.; Lee, C.S.; Li, X.; Kim, K.-H. The superior mineralization potential of a graphitic carbon nitride/titanium dioxide composite and its application in the construction of a portable photocatalytic air purification system against gaseous formaldehyde. J. Mater. Chem. A 2024, 12, 32239–32258. [Google Scholar] [CrossRef]
- Sahu, D.; Pervez, S.; Karbhal, I.; Tamrakar, A.; Mishra, A.; Verma, S.R.; Deb, M.K.; Ghosh, K.K.; Pervez, Y.F.; Shrivas, K.; et al. Applications of different adsorbent materials for the removal of organic and inorganic contaminants from water and wastewater—A review. Desalin. Water Treat. 2024, 317, 100253. [Google Scholar] [CrossRef]
- Polliotto, V.; Pomilla, F.R.; Maurino, V.; Marcì, G.; Bianco Prevot, A.; Nisticò, R.; Magnacca, G.; Paganini, M.C.; Ponce Robles, L.; Perez, L.; et al. Different approaches for the solar photocatalytic removal of micro-contaminants from aqueous environment: Titania vs. hybrid magnetic iron oxides. Catal. Today 2019, 328, 164–171. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; You, J.; Huang, J.; Gan, R.; Guo, J.; Zhang, X. Critical secondary resource for porous ceramics: A review on recycling of inorganic solid wastes. J. Eur. Ceram. Soc. 2024, 44, 116781. [Google Scholar] [CrossRef]
- Xu, C.; Nasrollahzadeh, M.; Selva, M.; Issaabadi, Z.; Luque, R. Waste-to-wealth: Biowaste valorization into valuable bio(nano)materials. Chem. Soc. Rev. 2019, 48, 4791–4822. [Google Scholar] [CrossRef]
- Trovato, V.; Sfameni, S.; Ben Debabis, R.; Rando, G.; Rosace, G.; Malucelli, G.; Plutino, M.R. How to Address Flame-Retardant Technology on Cotton Fabrics by Using Functional Inorganic Sol-Gel Precursors and Nanofillers: Flammability Insights, Research Advances, and Sustainability Challenges. Inorganics 2023, 11, 306. [Google Scholar] [CrossRef]
- Guo, X.; Zeng, M.; Yu, H.; Lin, F.; Li, J.; Wang, W.; Chen, G. Critical review for the potential analysis of material utilization from inorganic industrial solid waste. J. Clean. Prod. 2024, 459, 142457. [Google Scholar] [CrossRef]
- Biswal, B.K.; Zhang, B.; Tran, P.T.M.; Zhang, J.; Balasubramanian, R. Recycling of spent lithium-ion batteries for a sustainable future: Recent advancements. Chem. Soc. Rev. 2024, 53, 5552–5592. [Google Scholar] [CrossRef]
- Giner-Casares, J.; Henriksen-Lacey, M.; Coronado-Puchau, M.; Liz-Marzan, L.M. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mater. Today 2016, 19, 19–28. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.; Li, J.; Liu, Z.; Cheng, L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 2021, 50, 8669–8742. [Google Scholar] [CrossRef]
- Nisticò, R. A Comprehensive Study on the Applications of Clays into Advanced Technologies, with a Particular Attention on Biomedicine and Environmental Remediation. Inorganics 2022, 10, 40. [Google Scholar] [CrossRef]
- Liu, C.; Xu, M.; Wang, Y.; Yin, Q.; Hu, J.; Chen, H.; Sun, Z.; Liu, C.; Li, X.; Zhou, W.; et al. Exploring the potential of hydroxyapatite-based materials in biomedicine: A comprehensive review. Mater. Sci. Eng. R Rep. 2024, 161, 100870. [Google Scholar] [CrossRef]
- Moller, K.T.; Jensen, T.R.; Akiba, E.; Li, H.-w. Hydrogen—A sustainable energy carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Sartbaeva, A.; Kuznetsov, V.L.; Wells, S.A.; Edwards, P.P. Hydrogen nexus in a sustainable energy future. Energy Environ. Sci. 2008, 1, 79–85. [Google Scholar] [CrossRef]
- von Colbe, J.B.; Ares, J.-R.; Barale, J.; Baricco, M.; Buckley, C.; Capurso, G.; Gallandat, N.; Grant, D.M.; Guzik, M.N.; Jacob, I.; et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy 2019, 44, 7780–7808. [Google Scholar] [CrossRef]
- Gebretatios, A.G.; Banat, F.; Cheng, C.K. A critical review of hydrogen storage: Toward the nanoconfinement of complex hydrides from the synthesis and characterization perspectives. Sustain. Energy Fuels 2024, 8, 5091–5130. [Google Scholar] [CrossRef]
- Thakur, J.; Phogat, P.; Shreya. Catalyst design for efficient water splitting: A comprehensive review of challenges and opportunities. Fuel 2025, 392, 134954. [Google Scholar] [CrossRef]
- Li, L.; Wang, P.; Shao, Q.; Huang, X. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, Z.-Y. Design strategies of supported metal-based catalysts for efficient oxidative desulfurization of fuel. J. Ind. Eng. Chem. 2022, 108, 1–14. [Google Scholar] [CrossRef]
- Shetty, S.S.; Deepthi, D.; Harshitha, S.; Sonkusare, S.; Naik, P.B.; Kumari, N.S.; Madhyastha, H. Environmental pollutants and their effects on human health. Helyon 2023, 9, e19496. [Google Scholar] [CrossRef]
Subsections | Contribution No. | Title |
---|---|---|
Storage and delivery of renewable energy: Hydrogen-based technology | 1 | Li, M.; Hu, Y.; Kong, H.; Huang, Q.; Chen, Y.; Yan, Y. A Study on the Volume Expansion of Vanadium-Based Alloy Powders and Compacts During Hydrogen Sorption. Inorganics 2024, 12, 318. https://doi.org/10.3390/inorganics12120318. |
2 | Yang, Q.; Jia, X.; Qin, Z.; Ding, X.; Li, Y. Enhancements in Hydrogen Storage Properties of Magnesium Hydride Supported by Carbon Fiber: Effect of C–H Interactions. Inorganics 2024, 12, 273. https://doi.org/10.3390/inorganics12110273. | |
3 | Davis Cortina, M.; Romero de Terreros Aramburu, M.; Neves, A.M.; Hurtado, L.; Jepsen, J.; Ulmer, U. The Integration of Thermal Energy Storage Within Metal Hydride Systems: A Comprehensive Review. Inorganics 2024, 12, 313. https://doi.org/10.3390/inorganics12120313. | |
4 | Zhong, J.; Zhang, T.; Tian, J.; Gao, W.; Wang, Y. Nickel Foam-Supported FeP Encapsulated in N, P Co-Doped Carbon Matrix for Efficient Electrocatalytic Hydrogen Evolution. Inorganics 2024, 12, 291. https://doi.org/10.3390/inorganics12110291. | |
Environmental remediation | 5 | Wang, Y.; Yu, H.; Wang, H.; Chen, T. Hierarchically Porous Titanosilicate Hollow Spheres Containing TS-1 Zeolite Precursors for Oxidative Desulfurization. Inorganics 2025, 13, 37. https://doi.org/10.3390/inorganics13020037 |
6 | Sriram, G.; Baby, N.; Dhanabalan, K.; Arunpandian, M.; Selvakumar, K.; Sadhasivam, T.; Oh, T.H. Studies of Various Batch Adsorption Parameters for the Removal of Trypan Blue Using Ni-Zn-Bi-Layered Triple Hydroxide and Their Isotherm, Kinetics, and Removal Mechanism. Inorganics 2024, 12, 296. https://doi.org/10.3390/inorganics12110296. | |
7 | El Atti, O.; Hot, J.; Fajerwerg, K.; Lorber, C.; Lebeau, B.; Ryzhikov, A.; Kahn, M.; Collière, V.; Coppel, Y.; Ratel-Ramond, N.; Ménini, P.; Fau, P. Synthesis of TiO2/SBA-15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement. Inorganics 2024, 12, 183. https://doi.org/10.3390/inorganics12070183. | |
Development of inorganic materials with enhanced optical and thermal properties | 8 | Sassi, S.; Bouich, A.; Hajjaji, A.; Khezami, L.; Bessais, B.; Soucase, B.M. Cu-Doped TiO2 Thin Films by Spin Coating: Investigation of Structural and Optical Properties. Inorganics 2024, 12, 188. https://doi.org/10.3390/inorganics12070188. |
9 | Gáborová, K.; Hegedüs, M.; Levinský, P.; Mihok, F.; Matvija, M.; Knížek, K.; Milkovič, O.; Vatraľová, D.; Hejtmánek, J.; Saksl, K. Thermoelectric Characteristics of β-Ag2Se1+x Prepared via a Combined Rapid Mechano-Thermal Approach. Inorganics 2024, 12, 334. https://doi.org/10.3390/inorganics12120334. | |
10 | Costa Oliveira, F.d.A.; Galindo, J.; Rodríguez, J.; Cañadas, I.; Cruz Fernandes, J. Thermal Shock Resistance of Commercial Oxide-Bonded Silicon Carbide Reticulated Foams under Concentrated Solar Radiation at PSA: A Feasibility Study. Inorganics 2024, 12, 246. https://doi.org/10.3390/inorganics12090246. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisticò, R.; Jensen, T.R. Featured Papers in Inorganic Materials 2024. Inorganics 2025, 13, 110. https://doi.org/10.3390/inorganics13040110
Nisticò R, Jensen TR. Featured Papers in Inorganic Materials 2024. Inorganics. 2025; 13(4):110. https://doi.org/10.3390/inorganics13040110
Chicago/Turabian StyleNisticò, Roberto, and Torben R. Jensen. 2025. "Featured Papers in Inorganic Materials 2024" Inorganics 13, no. 4: 110. https://doi.org/10.3390/inorganics13040110
APA StyleNisticò, R., & Jensen, T. R. (2025). Featured Papers in Inorganic Materials 2024. Inorganics, 13(4), 110. https://doi.org/10.3390/inorganics13040110