Copper Methacrylate Complexes with Benzimidazole Derivatives: Structural Characterization and Antimicrobial Assays
Abstract
1. Introduction
2. Results and Discussions
2.1. Description of the X-Ray Crystal Structures of the Complexes
2.2. Spectral Characterization
2.2.1. Fourier Transform Infrared Spectroscopy
2.2.2. Electronic Spectroscopy
2.3. Evaluation of the Antimicrobial Activity Complexes
2.4. Biocompatibility
3. Materials and Methods
3.1. General Information
3.2. Synthesis of Complexes
- The first layer (from down to up) consists of a 10 mL methanol + ethanol solution (1:1 in volume) containing copper metacrylate (0.10 g), the second one of a 10 mL ethanol, and the last one of an 8 mL methanol solution of benzimidazole derivatives (0.15 g).
- The first layer (from down to up) consists of a 10 mL methanol solution containing copper metacrylate (0.10 g), the second one of a 10 mL methanol, and the last of an 8 mL methanol solution of benzimidazole derivatives (0.15 g).
- From system I, a mixture of green and purple crystals were obtained in the case of benzimidazole and 2-methylbenzimidazole (with more green crystals obtained in the middle of the tube, while the purple crystals were concentrated in the lower part). These were separated mechanically. In case of 5,6-dimethylbenzimidazole, solely violet crystals were obtained.
- From system II, only purple crystals were obtained for all benzimidazole derivatives.
- [Cu(HBzIm)2(Macr)2] (1) (purple crystals). Anal. Calc. for Cu0.5C11H11N2O2: Cu, 13.52; C, 56.22; H, 4.72; N, 11.92; Found: Cu, 13.58; C, 56.19; H, 4.78; N, 12.02.
- [Cu2(HBzIm)2(Macr)4] (2) (green crystals); Anal. Calc. for CuC15H16N2O4: Cu, 18.06; C, 51.20; H, 4.58; N, 7.96; Found: Cu, 18.11; C, 51.16; H, 4.61; N, 8.04.
- [Cu(2-MeBzIm)2(Macr)2] (3) (purple crystals). Anal. Calc. for Cu0.5C12H13N2O2: Cu, 12.76; C, 57.88; H, 5.26; N, 11.25; Found: Cu, 12.81; C, 57.84; H, 5.31; N, 11.31.
- [Cu2(2-MeBzIm)2(Macr)4] (4) (green crystals). Anal. Calc. for CuC16H18N2O4: Cu, 17.37; C, 52.52; H, 4.96; N, 7.66; Found: Cu, 17.43; C, 52.58; H, 5.05; N, 7.73.
- [Cu(5,6-Me2BzIm)2(Macr)2] (5) (purple crystals). Anal. Calc. for Cu0.5C13H15N2O2: Cu, 12.08; C, 59.36; H, 5.75; N, 10.65; Found: Cu, 12.15; C, 59.44; H, 5.83; N, 10.73.
3.3. Antimicrobial Activity
3.3.1. Microbial Strains
3.3.2. Qualitative Evaluation of Antimicrobial Activity
3.3.3. Quantitative Evaluation of Antimicrobial Activity
3.3.4. Evaluation of Microbicidal Activity
3.3.5. Microbial Adherence
3.4. Hemocompatibility
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olar, R.; Vlaicu, I.D.; Chifiriuc, M.C.; Bleotu, C.; Stănică, N.; Vasile Scăețeanu, G.; Silvestro, L.; Dulea, C.; Badea, M. Thermal behavior of new nickel (II) complexes with unsaturated carboxylates and heterocyclic N-donor ligands. J. Therm. Anal. Calor. 2017, 127, 731–741. [Google Scholar]
- Vlaicu, I.D.; Olar, R.; Maxim, C.; Chifiriuc, M.C.; Bleotu, C.; Stănică, N.; Vasile Scăețeanu, G.; Dulea, C.; Avram, S.; Badea, M. Evaluating the biological potential of some new cobalt (II) complexes with acrylate and benzimidazole derivatives. Appl. Org. Chem. 2019, 33, e4976. [Google Scholar] [CrossRef]
- Ajibola, A.A.; Perveen, F.; Jan, K.; Anibijuwon, I.I.; Shaibu, S.E.; Sieroń, L.; Maniukiewicz, W. A Five-Coordinate Copper(II) Complex Constructed from Sterically Hindered 4-Chlorobenzoate and Benzimidazole: Synthesis, Crystal Structure, Hirshfeld Surface Analysis, DFT, Docking Studies and Antibacterial Activity. Crystals 2020, 10, 991. [Google Scholar] [CrossRef]
- Pashchevskaya, N.V.; Nazarenko, M.A.; Bolotin, S.N.; Oflidi, A.I.; Panyushkin, V.T. Effect of the condition of synthesis on the composition and structure of copper (II) complexes with benzimidazole. Russ. J. Inorg. Chem. 2010, 55, 1425–1432. [Google Scholar]
- Mahurkar, N.; Gawhale, N.; Lokhande, M.; Uke, S.; Kodape, M. Benzimidazole: A versatile scaffold for drug discovery and beyond—A comprehensive review of synthetic approaches and recent advancements in medicinal chemistry. Results Chem. 2023, 6, 101139. [Google Scholar] [CrossRef]
- Satija, G.; Sharma, B.; Madan, A.; Iqubal, A.; Shaquiquzzaman, M.; Akhter, M.; Parvez, S.; Khan, M.A.; Alam, M.M. Benzimidazole based derivatives as anticancer agents: Structure activity relationship analysis for various targets. J. Heterocycl. Chem. 2022, 59, 22–66. [Google Scholar]
- Wu, K.; Peng, X.; Chen, M.; Li, Y.; Tang, G.; Peng, J.; Peng, Y.; Cao, X. Recent progress of research on anti-tumor agents using benzimidazole as the structure unit. Chem. Biol. Drug Des. 2022, 99, 736–757. [Google Scholar] [PubMed]
- Al Awadh, A.A. Biomedical applications of selective metal complexes of indole, benzimidazole, benzothiazole and benzoxazole: A review (from 2015 to 2022). Saudi Pharm. J. 2023, 31, 101698. [Google Scholar] [CrossRef]
- Ebenezer, O.; Oyetunde-Joshua, F.; Omotoso, O.; Shapi, M. Benzimidazole and its derivatives: Recent advances (2020–2022). Results Chem. 2023, 5, 100925. [Google Scholar] [CrossRef]
- Hernandez-Romero, D.; Rosete-Luna, S.; Lopez-Monteon, A.; Chavez-Pina, A.; Perez-Hernandez, N.; Marroquin-Flores, J.; Cruz-Navarro, A.; Pesado-Gomez, G.; Morales-Morales, D.; Colorado-Peralta, R. First-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumor activity. Coord. Chem. Rev. 2021, 439, 213930. [Google Scholar] [CrossRef]
- Devereux, M.; O’Shea, D.; O’Connor, M.; Grehan, H.; Connor, G.; McCann, M.; Rosair, G.; Lyng, F.; Kellet, A.; Walsh, M.; et al. Synthesis, catalase, superoxide dismutase and antitumour activities of copper (II) carboxylate complexes incorporating benzimidazole, 1,10-phenantroline, and bipyridine ligands: X-ray crystal structures of [Cu(BZA)2(bipy(H2O)], [Cu(SalH)2(BZDH)2] and [Cu(CH3COO)2(5,6-DMBZDH)2] (SalH2 = salicylic acid; BZAH = benzoic acid; BZDH = benzimidazole and 5,6-DMBZDH = 5,6-dimethylbenzimidazole). Polyhedron 2007, 26, 4073–4084. [Google Scholar]
- Prosser, K.; Chang, S.; Saraci, F.; Le, P.; Walsby, C. Anticancer copper pyridine benzimidazole complexes: ROS generation, biomolecule interactions, and cytotoxicity. J. Inorg. Biochem. 2017, 167, 89–99. [Google Scholar]
- Hussain, A.; AlAjmi, M.F.; Rehman, M.T.; Amir, S.; Husain, F.M.; Alsalme, A.; Siddiqui, M.A.; AlKhedhairy, A.; Khan, R.A. Copper(II) complexes as potential anticancer and nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Sci. Rep. 2019, 9, 5237. [Google Scholar]
- Kacar, S.; Unver, H.; Sahinturk, V. A mononuclear copper (II) complex containing benzimidazole and pyridyl ligands: Synthesis, characterization, and antiproliferative activity against human cancer cells. Arab. J. Chem. 2020, 13, 4310–4323. [Google Scholar]
- Tosik, A.; Sieron, L.; Bukowska-Strzyzewska, M. Heptacoordinate CuII in catena-poly[aquabis(benzimidazole-N3)copper(II)-μ-adipato-O,O′:O″,O‴. Acta Crystallogr. 1995, C51, 1985–1987. [Google Scholar]
- Sieron, L.; Bukowska-Strzyzewska, M. Poly[bis(benzimidazole-N3)copper(II)-μ-acetylenedicarboxylato-O:O′-μ-aqua] and poly[bis(benzimidazole-N3)copper(II)-μ-aqua-μ-fumarato-O:O′. Acta Crystallogr. 1998, C54, 1431–1435. [Google Scholar]
- Li, H.; Yin, K.-L.; Xu, D.-J. Catena-poly[[bis(1H-benzimidazole-kN3)(salicylate-kO)copper(II)]-μ-salicylato-O,O′:O″]. Acta Crystallogr. 2005, C61, m19–m21. [Google Scholar]
- Vlaicu, I.D.; Constand, M.; Olar, R.; Marinescu, D.; Grecu, M.N.; Lazar, V.; Chifiriuc, M.C.; Badea, M. Thermal stability of new biologic active copper (II) complexes with 5,6-dimethylbenzimidazole. J. Therm. Anal. Calorim. 2013, 113, 1369–1377. [Google Scholar]
- Badea, M.; Vlaicu, I.D.; Olar, R.; Constand, M.; Bleotu, C.; Chifiriuc, M.C.; Marutescu, L.; Lazar, V.; Grecu, M.N.; Marinescu, D. Thermal behaviour and characterisation of new biologically active Cu(II) complexes with benzimidazole as main ligand. J. Therm. Anal. Calor. 2014, 118, 1119–1133. [Google Scholar]
- Vlaicu, I.D.; Borodi, G.; Vasile Scăețeanu, G.; Chifiriuc, M.C.; Maruţescu, L.; Popa, M.; Stefan, M.; Mercioniu, I.F.; Maurer, M.; Daniliuc, C.G.; et al. X-ray Crystal Structure, Geometric Isomerism, and Antimicrobial Activity of New Copper(II) Carboxylate Complexes with Imidazole Derivatives. Molecules 2018, 23, 3253. [Google Scholar] [CrossRef] [PubMed]
- Teodoru, D.V.; Olar, R.; Maxim, C.; Bacalum, M.; Răileanu, M.; Iorgulescu, E.-E.; Vasile Scăețeanu, G.; Badea, M. Copper(II) Methacrylate Complexes with Imidazole Derivatives—Structural, Spectral and Antitumor Features. Molecules 2024, 29, 4010. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, Q.; Yang, B.; Shi, Q.; Gao, Y.; Zhou, Z. Synthesis, crystal structure and forming mechanism of two novel copper (II) α-methacrylate complexes with benzimidazole. Sci. China Ser. B 1999, 42, 363–372. [Google Scholar] [CrossRef]
- Oldham, C. Carboxylates, squarates and related species. In Comprehensive Coordination Chemistry, 1st ed.; Wilkinson, G., Gillard, R.D., McCleverty, J.A., Eds.; Pergamon Press: Oxford, UK, 1987; pp. 435–460. [Google Scholar]
- Deacon, G.B.; Philips, J.R. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Marques, L.; Marinho, M.V.; Correa, C.; Speziali, N.; Diniz, R.; Machado, F. One-dimensional copper (II) coordination polymers based on carboxylate anions and rigid pyridyl-donor ligands. Inorg. Chim. Acta 2011, 368, 242–246. [Google Scholar] [CrossRef]
- Edelsbacher, P.; Redhammer, G.; Monkowius, U. Copper (II) complexes bearing cyclobutanecarboxylate and pyridine ligands: A new series of dinuclear paddle-wheel complexes. Monatsh. Chemie 2020, 151, 543–547. [Google Scholar] [CrossRef]
- Bivián-Castro, E.Y.; Flores-Alamo, M.; Escudero, R.; Gómez-Vidal, V.; Segoviano-Garfias, J.J.N.; Castañeda-Contreras, J.; Saavedra-Arroyo, Q.E. Synthesis and Characterization of a New Cu(II) Paddle-Wheel-like Complex with 4-Vinylbenzoate as an Inorganic Node for Metal–Organic Framework Material Design. Materials 2023, 16, 4866. [Google Scholar] [CrossRef]
- Lever, A.B.P. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 1984; pp. 481–505. ISBN 0444416994. [Google Scholar]
- Salah, I.; Parkin, I.P.; Allan, E. Copper as an antimicrobial agent: Recent advances. RSC Adv. 2021, 11, 18179–18186. [Google Scholar] [CrossRef]
- Da Silva Barboza, A.; Fang, L.; Ribeiro, J.; Cuevas-Suarez, C.; Moraes, R.; Lund, R. Physicomechanical, optical, and antifungal properties of polymethyl methacrylate modified with metal methacrylate monomers. J. Prosthet. Dent. 2021, 125, 706.e1–706.e6. [Google Scholar] [CrossRef]
- Pathare, B.; Bansode, T. Review- biological active benzimidazole derivatives. Results Chem. 2021, 3, 100200. [Google Scholar] [CrossRef]
- Frota, H.F.; Barbosa, P.F.; Lorentino, C.M.A.; Affonso, L.R.F.; Ramos, L.S.; Oliveira, S.S.C.; Souza, L.O.P.; Abosede, O.O.; Ogunlaja, A.S.; Branquinha, M.H.; et al. Unveiling the antifungal mechanisms of CTP, a new copper(II)-theophylline/1,10-phenanthroline complex, on drug-resistant non-albicans Candida species. Biometals 2024, 37, 1237–1253. [Google Scholar] [CrossRef] [PubMed]
- Savić, N.D.; Vojnovic, S.; Glišić, B.Đ.; Crochet, A.; Pavic, A.; Janjić, G.V.; Pekmezović, M.; Opsenica, I.M.; Fromm, K.M.; Nikodinovic-Runic, J.; et al. Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. Eur. J. Med. Chem. 2018, 156, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Tiwari, M. Synthesis and Antimicrobial Activity of Some Benzimidazole and 2-Methylbenzimidazole derivatives. Asian J. Chem. 2017, 29, 838–842. [Google Scholar] [CrossRef]
- Alexander, M.K.; Miu, A.; Oh, A.; Reichelt, M.; Ho, H.; Chalouni, C.; Labadie, S.; Wang, L.; Liang, J.; Nickerson, N.N.; et al. Disrupting Gram-Negative Bacterial Outer Membrane Biosynthesis through Inhibition of the Lipopolysaccharide Transporter MsbA. Antimicrob. Agents Chemother 2018, 62, e01142-18. [Google Scholar] [CrossRef]
- Al-Matarneh, C.M.; Nicolescu, A.; Marinas, I.C.; Chifiriuc, M.C.; Shova, S.; Silion, M.; Pinteala, M. Novel antimicrobial iodo-dihydro-pyrrole-2-one compounds. Future Med. Chem. 2023, 15, 1369–1391. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.T.; Tan, Y.J.; Oon, C.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm. Sin. B 2023, 13, 478–497. [Google Scholar] [CrossRef]
- Smułek, W.; Kaczorek, E. Factors Influencing the Bioavailability of Organic Molecules to Bacterial Cells—A Mini-Review. Molecules 2022, 27, 6579. [Google Scholar] [CrossRef]
- Niu, M.; Li, Z.; Li, H.; Li, X.; Dou, J.; Wang, S. DNA/protein interaction, cytotoxic activity and magnetic properties of amino-alcohol Schiff base derived Cu(II)/Ni(II) metal complexes: Influence of the nuclearity and metal ions. RSC Adv. 2015, 5, 37085–37095. [Google Scholar] [CrossRef]
- Matsson, P.; Kihlberg, J. How Big Is Too Big for Cell Permeability? J. Med. Chem. 2017, 60, 1662–1664. [Google Scholar] [CrossRef]
- Umba-Tsumbu, E.; Hammouda, A.N.; Jackson, G.E. Evaluation of Membrane Permeability of Copper-Based Drugs. Inorganics 2023, 11, 179. [Google Scholar] [CrossRef]
- Elhusseiny, A.F.; El-Dissouky, A.; Mautner, F.; Tawfik, E.M.; El-Sayed, D.S. An insight into non-covalent interactions in binary, ternary and quaternary copper (II) complexes: Synthesis, X-ray structure, DFT calculations, antimicrobial activity and molecular docking studies. Inorg. Chim. Acta 2022, 532, 120748. [Google Scholar] [CrossRef]
- Noreen, S.; Sumrra, S.H. Aminothiazole-Linked Metal Chelates: Synthesis, Density Functional Theory, and Antimicrobial Studies with Antioxidant Correlations. ACS Omega 2021, 6, 33085–33099. [Google Scholar]
- El-Sayed, D.S.; Tawfik, E.M.; Elhusseiny, A.F.; El-Dissouky, A. A perception into binary and ternary copper (II) complexes: Synthesis, characterization, DFT modeling, antimicrobial activity, protein binding screen, and amino acid interaction. BMC Chem. 2023, 17, 55. [Google Scholar]
- Portelinha, J.; Duay, S.S.; Yu, S.I.; Heilemann, K.; Daben, M.; Libardo, J.; Juliano, S.A.; Klassen, J.L.; Angeles-Boza, A.M. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem. Rev. 2021, 121, 2648–2712. [Google Scholar]
- Syaima, H.; Prasetyo, W.E.; Rahardjo, S.B.; Suryanti, V. Semi-coordination Cu–O bond on a copper complex featuring O,O-donor ligand as potential antibacterial agent: Green synthesis, characterization, DFT, in-silico ADMET profiling and molecular docking studies. Struct. Chem. 2024, 35, 721–737. [Google Scholar]
- Zalevskaya, O.A.; Gur’eva, Y.A. Recent Studies on the Antimicrobial Activity of Copper Complexes. Russ. J. Coord. Chem. 2021, 47, 861–880. [Google Scholar]
- Bellia, F.; Lanza, V.; Naletova, I.; Tomasello, B.; Ciaffaglione, V.; Greco, V.; Sciuto, S.; Amico, P.; Inturri, R.; Vaccaro, S.; et al. Copper(II) Complexes with Carnosine Conjugates of Hyaluronic Acids at Different Dipeptide Loading Percentages Behave as Multiple SOD Mimics and Stimulate Nrf2 Translocation and Antioxidant Response in In Vitro Inflammatory Model. Antioxidants 2023, 12, 1632. [Google Scholar] [CrossRef] [PubMed]
- Caro-Ramirez, J.Y.; Parente, J.E.; Gaddi, G.M.; Martini, N.; Franca, C.A.; Urquiza, N.M.; Lezama, L.; Piro, O.E.; Echeverría, G.A.; Williams, P.A.M.; et al. The biocatalytic activity of the “lantern-like” binuclear copper complex with trisulfide bridges mimicking SOD metallo-proteins. Polyhedron 2022, 221, 115879. [Google Scholar]
- Kupcewicz, B.; Sobiesiak, K.; Malinowska, K.; Koprowska, K.; Czyz, M.; Keppler, B.; Budzisz, E. Copper(II) complexes with derivatives of pyrazole as potential antioxidant enzyme mimics. Med. Chem. Res. 2013, 22, 2395–2402. [Google Scholar]
- Cegelski, L.; Smith, C.L.; Hulgren, S.J. Microbial adhesion. In Encyclopedia of Microbiology; Schaechter, M., Ed.; Academic Press: New York, NY, USA, 2009; pp. 1–10. [Google Scholar]
- Beeton, M.L.; Aldrich-Wright, J.R.; Bolhuis, A. The antimicrobial and antibiofilm activities of copper(II) complexes. J. Inorg. Biochem. 2014, 140, 167–172. [Google Scholar]
- Nagarasu, P.; Gayathri, P.; Sri, S.N.; Saisubramanian, N.; Dhanaraj, P.; Moon, D.; Savarimuthu, P.A.; Madhu, V. Synthesis, antibiofilm activity and molecular docking study of new water-soluble copper(II)-pincer complexes. Inorg. Chem. Commun. 2022, 139, 109316. [Google Scholar]
- Gomes da Silva Dantas, F.; Araújo de Almeida-Apolonio, A.; Pires de Araújo, R.; Regiane Vizolli Favarin, L.; Fukuda de Castilho, P.; De Oliveira Galvão, F.; Inez Estivalet Svidzinski, T.; Antônio Casagrande, G.; Mari Pires de Oliveira, K. A Promising Copper(II) Complex as Antifungal and Antibiofilm Drug Against Yeast Infection. Molecules 2018, 23, 1856. [Google Scholar] [CrossRef]
- Dimitrijević, J.D.; Solovjova, N.; Bukonjić, A.M.; Tomović, D.L.; Milinkovic, M.; Caković, A.; Bogojeski, J.; Ratković, Z.R.; Janjić, G.V.; Rakić, A.A.; et al. Docking Studies, Cytotoxicity Evaluation and Interactions of Binuclear Copper(II) Complexes with S-Isoalkyl Derivatives of Thiosalicylic Acid with Some Relevant Biomolecules. Int. J. Mol. Sci. 2023, 24, 12504. [Google Scholar] [CrossRef] [PubMed]
- Hoang, B.X.; Han, B.O.; Fang, W.H.; Tran, H.D.; Hoang, C.; Shaw, D.G.; Nguyen, T.Q. The Rationality of Implementation of Dimethyl Sulfoxide as Differentiation-inducing Agent in Cancer Therapy. Cancer Diagn. Progn. 2023, 3, 1–8. [Google Scholar] [CrossRef]
- Çağlayan, S.T.; Gurbanov, R. Modulation of bacterial membranes and cellular macromolecules by dimethyl sulfoxide: A dose-dependent study providing novel insights. Int. J. Biol. Macromol. 2024, 267, 131581. [Google Scholar]
- Fedorka-Cray, P.J.; Cray, W.C., Jr.; Anderson, G.A.; Nickerson, K.W. Bacterial tolerance of 100% dimethyl sulfoxide. Can. J. Microbiol. 1988, 34, 688–689. [Google Scholar] [CrossRef]
- Tunçer, S.; Gurbanov, R. Non-growth inhibitory doses of dimethyl sulfoxide alter gene expression and epigenetic pattern of bacteria. Appl. Microbiol. Biotechnol. 2023, 107, 299–312. [Google Scholar] [CrossRef]
- Summer, K.; Browne, J.; Hollanders, M.; Benkendorff, K. Out of control: The need for standardised solvent approaches and data reporting in antibiofilm assays incorporating dimethyl-sulfoxide (DMSO). Biofilm 2022, 4, 100081. [Google Scholar]
- Mi, H.; Wang, D.; Xue, Y.; Zhang, Z.; Niu, J.; Hong, Y.; Drlica, K.; Zhao, X. Dimethyl Sulfoxide Protects Escherichia coli from Rapid Antimicrobial-Mediated Killing. Antimicrob. Agents Chemother. 2016, 60, 5054–5058. [Google Scholar] [CrossRef]
- Kanďárová, H.; Pôbiš, P. The “Big Three” in biocompatibility testing of medical devices: Implementation of alternatives to animal experimentation—Are we there yet? Front. Toxicol. 2024, 5, 1337468. [Google Scholar] [CrossRef]
- Saleem, K.; Wani, W.A.; Haque, A.; Lone, M.N.; Hsieh, M.F.; Jairajpuri, M.A.; Ali, I. Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline-based ligand. Future Med. Chem. 2013, 5, 135–146. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [PubMed]
- Geana, E.-I.; Ciucure, C.T.; Tamaian, R.; Marinas, I.C.; Gaboreanu, D.M.; Stan, M.; Chitescu, C.L. Antioxidant and Wound Healing Bioactive Potential of Extracts Obtained from Bark and Needles of Softwood Species. Antioxidants 2023, 12, 1383. [Google Scholar] [CrossRef] [PubMed]
HBzIm | 1 | 2 | 2-MeBzIm | 3 | 4 | 5,6-Me2BzIm | 5 | Assignments |
---|---|---|---|---|---|---|---|---|
3110 m 3097 m 3066 m 3014 m 2969 m | 3145 m 3091 m 3051 m 3034 m 2984 m | 3148 m 3117 m 3097 m 2960 m | 3178 m 3143 m 3112 m 3098 m 3063 m 2996 m | 3119 m 3062 m 3010 m 2971 m | 3063 w 2978 w 2954 w | 3096 s 3020 s | 3141 m 3087 w 2967 m | ν(CH) ν(NH) |
- | 2916 m | 2923w | - | 2923 m | 2925 w | 2926 s | 2922 m | νas(CH2) |
- | 2843 m | 2852 w | 2848 m | 2863 m | 2856 w | 2858 s | 2858 w | νs(CH2) |
1621 w | 1642 w | 1647 m | 1623 w | 1645 w | 1646 m | 1630 w | 1642 w | ν(C=N) |
1588 m | covered | 1571 s | 1556 m | covered | 1540 m | 1585 w | covered | δ(NH) |
- | 1538 vs | 1591 s | - | 1556 vs | 1599 vs | - | 1569 vs | νas(COO) |
- | 1500 s | 1499 m | 1487 s | 1492 w | 1488 w | 1476 vs | 1502 m | γ(CH from benzene ring) |
1479 m 1460 s 1409 vs | 1454 m | 1455 m | 1450 s 1418 s | 1415 s | 1458 m | 1447 s | 1450 m | ν(ring) |
- | 1419 s | 1415 vs | - | 1456 s | 1416 vs | - | 1438 m | νs(COO) |
1363 m 1345 m 1300 m | 1369 m 1306 m | 1305 m | 1361 s | 1373 m | 1371 w 1313 w | 1336 s | 1308 vs | ν(ring) |
1274 s | 1276 m | 1275 m | 1272 vs | 1283 m | 1278 w | 1270 vs | 1268 w | δ(benzene ring) |
1242 vs | 1237 m | 1240 m | 1220 m | 1226 m | 1239 w | 1240 m | 1235 m | ν(imidazole ring) |
1201 m 1132 m | 1203 w 1156 w | 1112 w | - | - | - | 1158 m | 1142 w | δ(CH from benzene ring) |
957 m | 972 m | 977 w | 1005 w | 1007 m | 1006 w | 954 s | 972 m | δ(CH from imidazole ring) |
932 m | 934 m | 938 m | 924 w | - | 930 w | 953 w | 926 m | δ(benzene ring) |
882 m | 886 m | 855 w | 850 w | 861 m | 855 w | 863 s | 874 m | γ(imidazole ring) |
846 w | 829 m | 829 m | 835 w | 832 m | 825 w | 844 s | 854 m | γ(CH from imidazole ring) |
768 m | 777 m | - | - | 765 w | 780 w | - | δ(imidazole ring) | |
745 vs | 745 s | 746 m | 737 vs | 743 s | 748 m | - | 726 m | γ(CH from benzene ring) |
625 m 617 w | 628 m | 631 m | 618 w | 633 m | 631 m | 647 w 619 m | 613 m | γ(NH) + δ(imidazole ring) + τ(imidazole ring) |
541 w | 548 w | 548 w | - | 555 w | 590 w | - | 573 m | τ(ring) |
Compound | Analytical Parameter (mg/mL) | S. aureus ATCC 25923 | MRSA 43300 | E. coli ATCC 25922 | P. aeruginosa ATCC 27853 | E. coli C10E | C. albicans ATCC 10231 | C. albicans sc1 |
---|---|---|---|---|---|---|---|---|
1 | MIC | 1.25 | 1.25 | 1.25 | 0.625 | 1.25 | 0.625 | 0.313 |
MMC | 5 | 5 | 2.5 | 1.25 | 2.5 | 1.25 | 1.25 | |
MBEC | 1.25 | 1.25 | 1.25 | 0.625 | 0.625 | 0.625 | 1.25 | |
2 | MIC | 1.25 | 1.25 | 1.25 | 0.625 | 1.25 | 0.313 | 0.313 |
MMC | 5 | 5 | 2.5 | 1.25 | 2.5 | 1.25 | 1.25 | |
MBEC | 1.25 | 1.25 | 1.25 | 0.625 | 1.25 | 0.625 | 0.156 | |
3 | MIC | 1.25 | 1.25 | 1.25 | 0.625 | 1.25 | 0.625 | 0.625 |
MMC | 2.5 | 1.25 | 2.5 | 2.5 | 2.5 | 1.25 | 1.25 | |
MBEC | 1.25 | 1.25 | 1.25 | 0.625 | 1.25 | 0.625 | 1.25 | |
4 | MIC | 1.25 | 1.25 | 1.25 | 0.625 | 1.25 | 0.625 | 0.625 |
MMC | 2.5 | 5 | 2.5 | 1.25 | 2.5 | 1.25 | 1.25 | |
MBEC | 1.25 | 1.25 | 1.25 | 0.625 | 1.25 | 0.625 | 1.25 | |
5 | MIC | 0.313 | 0.313 | 0.625 | 0.625 | 0.625 | 0.156 | 0.156 |
MMC | 0.625 | 0.625 | 0.625 | 1.25 | 0.625 | 0.625 | 0.625 | |
MBEC | 0.313 | 0.313 | 0.625 | 0.625 | 0.625 | 0.156 | 0.156 | |
CuMacr | MIC | 5 | 2.5 | 1.25 | 0.625 | 1.25 | 0.625 | 0.625 |
MMC | 5 | >5 | 2.5 | 1.25 | 2.5 | 1.25 | 1.25 | |
MBEC | 5 | 2.5 | 1.25 | 1.25 | 1.25 | 1.25 | 0.313 | |
DMSO | MIC | 2.5 | 5 | 1.25 | 1.25 | 1.25 | 0.625 | 0.625 |
MMC | 5 | >5 | 5 | 2.5 | 5 | 5 | 1.25 | |
MBEC | 2.5 | 5 | 1.25 | 1.25 | 2.5 | 1.25 | 0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrei, A.-G.; Olar, R.; Maxim, C.; Vasile Scăețeanu, G.; Marinas, I.-C.; Gaboreanu, M.-D.; Badea, M. Copper Methacrylate Complexes with Benzimidazole Derivatives: Structural Characterization and Antimicrobial Assays. Inorganics 2025, 13, 109. https://doi.org/10.3390/inorganics13040109
Andrei A-G, Olar R, Maxim C, Vasile Scăețeanu G, Marinas I-C, Gaboreanu M-D, Badea M. Copper Methacrylate Complexes with Benzimidazole Derivatives: Structural Characterization and Antimicrobial Assays. Inorganics. 2025; 13(4):109. https://doi.org/10.3390/inorganics13040109
Chicago/Turabian StyleAndrei, Andra-Georgeta, Rodica Olar, Cătălin Maxim, Gina Vasile Scăețeanu, Ioana-Cristina Marinas, Madalina-Diana Gaboreanu, and Mihaela Badea. 2025. "Copper Methacrylate Complexes with Benzimidazole Derivatives: Structural Characterization and Antimicrobial Assays" Inorganics 13, no. 4: 109. https://doi.org/10.3390/inorganics13040109
APA StyleAndrei, A.-G., Olar, R., Maxim, C., Vasile Scăețeanu, G., Marinas, I.-C., Gaboreanu, M.-D., & Badea, M. (2025). Copper Methacrylate Complexes with Benzimidazole Derivatives: Structural Characterization and Antimicrobial Assays. Inorganics, 13(4), 109. https://doi.org/10.3390/inorganics13040109