An Introductory Overview of Various Typical Lead-Free Solders for TSV Technology
Abstract
:1. Introduction
2. Various Solder Alloys
2.1. Sn-Bi Solder
2.2. Sn-Zn Solder
2.3. Sn-Cu Solder
2.4. Sn-Ag-Cu Solder
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tu, K.-N.; Liu, Y. Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology. Mater. Sci. Eng. R Rep. 2019, 136, 1–12. [Google Scholar] [CrossRef]
- Lee, H.; Wang, Y.-A.; Chen, C.-M. Development of nanotwins in electroplated copper and its effect on shear strength of tin/copper joint. J. Alloys Compd. 2018, 765, 335–342. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, Y.-C.; Tu, K.-N. Scaling effect of interfacial reaction on intermetallic compound formation in Sn/Cu pillar down to 1 μm diameter. Acta Mater. 2016, 117, 146–152. [Google Scholar] [CrossRef]
- Shen, W.-W.; Chen, K.-N. Three-dimensional integrated circuit (3D IC) key technology: Through-silicon via (TSV). Nanoscale Res. Lett. 2017, 12, 56. [Google Scholar] [CrossRef]
- Kim, J.; Pak, J.S.; Cho, J.; Song, E.; Cho, J.; Kim, H. High-frequency scalable electrical model and analysis of a through silicon via (TSV). IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 181–195. [Google Scholar]
- Motoyoshi, M. Through-silicon via (TSV). Proc. IEEE 2009, 97, 43–48. [Google Scholar] [CrossRef]
- Tong, H.-M.; Lai, Y.-S.; Wong, C. Advanced Flip Chip Packaging; Springer: Berlin/Heidelberg, Germany, 2013; Volume 142. [Google Scholar]
- Zhang, L.; Tu, K.-N. Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R Rep. 2014, 82, 1–32. [Google Scholar] [CrossRef]
- Ouyang, F.-Y.; Hong, G.-L.; Hsu, Y.-R.; Mao, S.-Y.; Liu, W.-J. Thermomigration in co/SnAg/co and cu/SnAg/co sandwich structure. Microelectron. Reliab. 2019, 97, 16–23. [Google Scholar] [CrossRef]
- Nabihah, A.; Nurulakmal, M. Effect of In addition on microstructure, wettability and strength of SnCu solder. Mater. Today Proc. 2019, 17, 803–809. [Google Scholar] [CrossRef]
- Wang, H.; Hu, X.; Jiang, X. Effects of Ni modified MWCNTs on the microstructural evolution and shear strength of Sn-3.0 Ag-0.5 Cu composite solder joints. Mater. Charact. 2020, 163, 110287. [Google Scholar] [CrossRef]
- Hu, L.; Xue, Y.; Wang, H. Glass-Cu joining by anodic bonding and soldering with eutectic Sn-9Zn solder. J. Alloys Compd. 2019, 789, 558–566. [Google Scholar] [CrossRef]
- Liu, L.; Xue, S.; Liu, S. Mechanical property of Sn-58Bi solder paste strengthened by resin. Appl. Sci. 2018, 8, 2024. [Google Scholar] [CrossRef]
- Ma, H.; Suhling, J.C.; Lall, P.; Bozack, M.J. Reliability of the aging lead free solder joint. In Proceedings of the 56th Electronic Components and Technology Conference, San Diego, CA, USA, 30 May–2 June 2006. [Google Scholar]
- Dreike, P.; Fleetwood, D.; King, D.; Sprauer, D.; Zipperian, T. An overview of high-temperature electronic device technologies and potential applications. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1994, 17, 594–609. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, Q.; Jiang, J.; Song, Z.L. Influences of Ag addition to Sn-58Bi solder on SnBi/Cu interfacial reaction. Mater. Lett. 2018, 214, 142–145. [Google Scholar] [CrossRef]
- Chuang, T.-H.; Wu, H.-F. Effects of Ce addition on the microstructure and mechanical properties of Sn-58Bi solder joints. J. Electron. Mater. 2011, 40, 71–77. [Google Scholar] [CrossRef]
- Zhang, K.; Li, W.; Song, P.; Zhao, C.; Zhang, K. Mechanical properties and constitutive model of Sn-58Bi alloy. Mater. Res. Express 2022, 9, 016505. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, J.; Xue, F.; Yao, Y. Mechanical deformation behavior and mechanism of Sn-58Bi solder alloys under different temperatures and strain rates. Mater. Sci. Eng. A 2016, 662, 251–257. [Google Scholar] [CrossRef]
- Liu, X.; Huang, M.; Wu, C.M.L.; Wang, L. Effect of Y2O3 particles on microstructure formation and shear properties of Sn-58Bi solder. J. Mater. Sci. Mater. Electron. 2010, 21, 1046–1054. [Google Scholar] [CrossRef]
- Dong, W.; Shi, Y.; Xia, Z.; Lei, Y.; Guo, F. Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy. J. Electron. Mater. 2008, 37, 982–991. [Google Scholar] [CrossRef]
- Kim, H.-T.; Yoon, J.-W. Effects of TiC nanoparticle addition on microstructures and mechanical properties of Sn-58Bi solder joints. Mater. Today Commun. 2024, 40, 109860. [Google Scholar] [CrossRef]
- Saad, H.M.; Bashir, M.N. Fractography analysis of Sn-58Bi solder joint after addition of cobalt nanoparticles. J. Mater. Sci. Mater. Electron. 2023, 34, 2235. [Google Scholar] [CrossRef]
- Kamaruzzaman, L.S.; Goh, Y.; Goh, Y.C. Investigation of the mechanical properties of lead-free Sn-58Bi solder alloy with cobalt addition through flux doping. Solder. Surf. Mt. Technol. 2024, 36, 285–295. [Google Scholar] [CrossRef]
- Bashir, M.N.; Saad, H.M.; Rizwan, M.; Quazi, M.M.; Ali, M.M.; Ahmed, A.; Zaidi, A.A.; Soudagar, M.E.M.; Haseeb, A.; Naher, S. Effects of tin particles addition on structural and mechanical properties of eutectic Sn–58Bi solder joint. J. Mater. Sci. Mater. Electron. 2022, 33, 22499–22507. [Google Scholar] [CrossRef]
- Yoon, J.-W.; Lee, C.-B.; Jung, S.-B. Interfacial reactions between Sn-58 mass% Bi eutectic solder and (Cu, electroless Ni-P/Cu) substrate. Mater. Trans. 2002, 43, 1821–1826. [Google Scholar] [CrossRef]
- Yang, L.; Li, T.; Liu, C.; Quan, S. Strengthening effect of molybdenum (Mo) addition in Sn-58Bi alloy during isothermal aging. Mater. Res. Express 2019, 6, 116547. [Google Scholar] [CrossRef]
- Zhou, S.; Shen, Y.-A.; Uresti, T.; Shunmugasamy, V.; Mansoor, B.; Nishikawa, H. Effects of in and Zn double addition on eutectic Sn-58Bi alloy. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019. [Google Scholar]
- Mokhtari, O.; Nishikawa, H. Effects of In and Ni addition on microstructure of Sn-58Bi solder joint. J. Electron. Mater. 2014, 43, 4158–4170. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, L.; Liu, Z.-Q.; Zhong, S.J.; Ma, J.; Bao, L. Effects of CuZnAl particles on properties and microstructure of Sn-58Bi solder. Materials 2017, 10, 558. [Google Scholar] [CrossRef]
- Subramanian, K.; Suganuma, K.; Kim, K.-S. Sn-Zn low temperature solder. In Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics; Springer: New York, NY, USA, 2007; pp. 121–127. [Google Scholar]
- Date, M.; Shoji, T.; Fujiyoshi, M.; Sato, K.; Tu, K.-N. Ductile-to-brittle transition in Sn–Zn solder joints measured by impact test. Scr. Mater. 2004, 51, 641–645. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, S.-B.; Gao, L.-L.; Sheng, Z.; Ye, H.; Xiao, Z.-X.; Zeng, G.; Chen, Y.; Yu, S.-L. Development of Sn–Zn lead-free solders bearing alloying elements. J. Mater. Sci. Mater. Electron. 2010, 21, 1–15. [Google Scholar] [CrossRef]
- Lin, K.-L.; Liu, T.-P. High-temperature oxidation of a Sn-Zn-Al solder. Oxid. Met. 1998, 50, 255–267. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, Y.; Xue, F. Effect of Nd and La on surface tension and wettability of Sn-8Zn-3Bi solders. Trans.-Nonferrous Met. Soc. China-Engl. Ed. 2005, 15, 1161. [Google Scholar]
- Wang, H.; Xue, S.; Chen, W.; Wang, J. Effect of Ag, Al, Ga addition on wettability of Sn-9 Zn lead-free solder. Trans. China Weld. Inst. 2007, 33–36, 44. [Google Scholar]
- Hui, W. Research status and prospect of Sn-Zn based lead-free solders. Weld. Join. 2007, 2, 31. [Google Scholar]
- Wu, S.; Kang, H.; Qu, P. Study of Sn-Zn lead-free solder by alloying. Electron. Process Technol 2008, 29, 66–70. [Google Scholar]
- Kim, S.; Kim, K.-S.; Kim, S.-S.; Suganuma, K. Interfacial reaction and die attach properties of Zn-Sn high-temperature solders. J. Electron. Mater. 2009, 38, 266–272. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, Y.; Xue, F. Properties of low melting point Sn–Zn–Bi solders. J. Alloys Compd. 2005, 397, 260–264. [Google Scholar] [CrossRef]
- Liu, J.-C.; Zhang, G.; Wang, Z.-H.; Xie, J.-Y.; Ma, J.-S.; Suganuma, K. Electrochemical behavior of Sn-xZn lead-free solders in aerated NaCl solution. In Proceedings of the 2015 16th International Conference on Electronic Packaging Technology (ICEPT), Changsha, China, 11–14 August 2015. [Google Scholar]
- Islam, M.; Chan, Y.; Rizvi, M.; Jillek, W. Investigations of interfacial reactions of Sn–Zn based and Sn–Ag–Cu lead-free solder alloys as replacement for Sn–Pb solder. J. Alloys Compd. 2005, 400, 136–144. [Google Scholar] [CrossRef]
- Qu, S.; Shi, Q.; Zhang, G.; Dong, X.; Xu, X. Effects of soldering temperature and preheating temperature on the properties of Sn–Zn solder alloys using wave soldering. Solder. Surf. Mt. Technol. 2024. [Google Scholar] [CrossRef]
- Honarbari, A.; Cataldi, P.; Zych, A.; Merino, D.; Paknezhad, N.; Ceseracciu, L.; Perotto, G.; Crepaldi, M.; Athanassiou, A. A green conformable thermoformed printed circuit board sourced from renewable materials. ACS Appl. Electron. Mater. 2023, 5, 5050–5060. [Google Scholar] [CrossRef]
- Gong, S.; Chen, G.; Qu, S.; Duk, V.; Xu, X.; Shi, Q.; Zhang, G. Effects of aging time and temperature on shear properties of Sn–Zn and Sn–Ag–Cu solder joints. J. Mater. Sci. Mater. Electron. 2024, 35, 750. [Google Scholar] [CrossRef]
- Zeng, G.; Xue, S.; Zhang, L.; Gao, L. Recent advances on Sn–Cu solders with alloying elements. J. Mater. Sci. Mater. Electron. 2011, 22, 565–578. [Google Scholar] [CrossRef]
- Zeng, G.; McDonald, S.D.; Gu, Q.; Terada, Y.; Uesugi, K.; Yasuda, H.; Nogita, K. The influence of Ni and Zn additions on microstructure and phase transformations in Sn–0.7 Cu/Cu solder joints. Acta Mater. 2015, 83, 357–371. [Google Scholar] [CrossRef]
- Huang, H.; Chen, B.; Hu, X.; Jiang, X.; Li, Q.; Che, Y.; Zu, S.; Liu, D. Research on Bi contents addition into Sn–Cu-based lead-free solder alloy. J. Mater. Sci. Mater. Electron. 2022, 33, 15586–15603. [Google Scholar] [CrossRef]
- Sharif, A.; Chan, Y. Effect of indium addition in Sn-rich solder on the dissolution of Cu metallization. J. Alloys Compd. 2005, 390, 67–73. [Google Scholar] [CrossRef]
- Gan, G.; Chen, B.; Wu, Y.; Yang, D.; Chi, L.; Liao, Y. Effect of Trace Cu on Microstructure, Spreadability and Oxidation Resistance Property of Sn-xCu Solders. Mater. Trans. 2017, 58, 549–553. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Ahmed, S.; Fahim, A.; Suhling, J.C.; Lall, P. Mechanical characterization of doped SAC solder materials at high temperature. In Proceedings of the 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 31 May–3 June 2016. [Google Scholar]
- Keller, J.; Baither, D.; Wilke, U.; Schmitz, G. Mechanical properties of Pb-free SnAg solder joints. Acta Mater. 2011, 59, 2731–2741. [Google Scholar] [CrossRef]
- Shnawah, D.A.; Sabri, M.F.M.; Badruddin, I.A. A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products. Microelectron. Reliab. 2012, 52, 90–99. [Google Scholar] [CrossRef]
- Kim, K.; Huh, S.; Suganuma, K. Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J. Alloys Compd. 2003, 352, 226–236. [Google Scholar] [CrossRef]
- Cui, Y.; Xian, J.; Zois, A.; Marquardt, K.; Yasuda, H.; Gourlay, C. Nucleation and growth of Ag3Sn in Sn-Ag and Sn-Ag-Cu solder alloys. Acta Mater. 2023, 249, 118831. [Google Scholar] [CrossRef]
- Unal, Ö.; Anderson, I.; Harringa, J.; Terpstra, R.; Cook, B.; Foley, J. Application of an asymmetrical four point bend shear test to solder joints. J. Electron. Mater. 2001, 30, 1206–1213. [Google Scholar] [CrossRef]
- Cheng, S.; Huang, C.-M.; Pecht, M. A review of lead-free solders for electronics applications. Microelectron. Reliab. 2017, 75, 77–95. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Z.; Suhling, J.C.; Lall, P.; Bozack, M.J. The effects of aging temperature on SAC solder joint material behavior and reliability. In Proceedings of the 2008 58th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 27–30 May 2008. [Google Scholar]
- Burke, C.; Punch, J. A comparison of the creep behavior of joint-scale SAC105 and SAC305 solder alloys. IEEE Trans. Compon. Packag. Manuf. Technol. 2014, 4, 516–527. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Lim, S.; Hanifah, M.M.M.; Matteini, P.; Yusoff, W.Y.W.; Hwang, B. An Introductory Overview of Various Typical Lead-Free Solders for TSV Technology. Inorganics 2025, 13, 86. https://doi.org/10.3390/inorganics13030086
Choi S, Lim S, Hanifah MMM, Matteini P, Yusoff WYW, Hwang B. An Introductory Overview of Various Typical Lead-Free Solders for TSV Technology. Inorganics. 2025; 13(3):86. https://doi.org/10.3390/inorganics13030086
Chicago/Turabian StyleChoi, Sooyong, Sooman Lim, Muhamad Mukhzani Muhamad Hanifah, Paolo Matteini, Wan Yusmawati Wan Yusoff, and Byungil Hwang. 2025. "An Introductory Overview of Various Typical Lead-Free Solders for TSV Technology" Inorganics 13, no. 3: 86. https://doi.org/10.3390/inorganics13030086
APA StyleChoi, S., Lim, S., Hanifah, M. M. M., Matteini, P., Yusoff, W. Y. W., & Hwang, B. (2025). An Introductory Overview of Various Typical Lead-Free Solders for TSV Technology. Inorganics, 13(3), 86. https://doi.org/10.3390/inorganics13030086