Preparation of a New Active Component 1,10-B10H8(S(C18H37)2)2 for Potentiometric Membranes for the Determination of Terbinafine Hydrochloride
Abstract
:1. Introduction
2. Results
2.1. Synthesis of the Active Ingredient
2.2. Ion Sensor Development
3. Materials and Methods
3.1. Analyses and Reagents
3.2. Synthesis of 1,10-B10H8(S(n-C18H37)2)2
3.3. Manufacturing Membranes
3.4. Potentiometric Measurements
Ag/AgCl | 1.0 mM terbinafine hydrochloride | PVC membrane | Sample solution | AgClsatd, 3M KCl | AgCl/Ag |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://www.un.org/ru/global-issues/water (accessed on 23 January 2025).
- Agnew, C.; Anderson, E. Water Resources in the Arid Realm; Routledge: London, UK, 2024; ISBN 9781003463917. [Google Scholar]
- Abramova, I.O. The Population of Africa under the Conditions of Transformation of the World Order. Her. Russ. Acad. Sci. 2022, 92, S1306–S1315. [Google Scholar] [CrossRef]
- Abramova, I.O.; Sharova, A.Y. Geostrategic Risks in the Transition to Green Energies (Using the Example of Africa). Geol. Ore Depos. 2023, 65, 449–462. [Google Scholar] [CrossRef]
- Yan, X.; Xia, Y.; Ti, C.; Shan, J.; Wu, Y.; Yan, X. Thirty Years of Experience in Water Pollution Control in Taihu Lake: A Review. Sci. Total Environ. 2024, 914, 169821. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Zhang, Y.; Zhu, G.; Gao, G. Eutrophication Control of Large Shallow Lakes in China. Sci. Total Environ. 2023, 881, 163494. [Google Scholar] [CrossRef]
- Yu, S.; Du, X.; Lei, Q.; Wang, X.; Wu, S.; Liu, H. Long-Term Variations of Water Quality and Nutrient Load Inputs in a Large Shallow Lake of Yellow River Basin: Implications for Lake Water Quality Improvements. Sci. Total Environ. 2023, 900, 165776. [Google Scholar] [CrossRef]
- Zdrachek, E.; Bakker, E. Potentiometric Sensing. Anal. Chem. 2021, 93, 72–102. [Google Scholar] [CrossRef]
- Cuartero, M.; Colozza, N.; Fernández-Pérez, B.M.; Crespo, G.A. Why Ammonium Detection Is Particularly Challenging but Insightful with Ionophore-Based Potentiometric Sensors—An Overview of the Progress in the Last 20 Years. Analyst 2020, 145, 3188–3210. [Google Scholar] [CrossRef]
- Ding, J.; Qin, W. Recent Advances in Potentiometric Biosensors. TrAC Trends Anal. Chem. 2020, 124, 115803. [Google Scholar] [CrossRef]
- Gil, R.L.; Amorim, C.G.; Montenegro, M.C.B.S.M.; Araújo, A.N. HPLC-Potentiometric Method for Determination of Biogenic Amines in Alcoholic Beverages: A Reliable Approach for Food Quality Control. Food Chem. 2022, 372, 131288. [Google Scholar] [CrossRef]
- Turyshev, E.S.; Kopytin, A.V.; Zhizhin, K.Y.; Kubasov, A.S.; Shpigun, L.K.; Kuznetsov, N.T. Potentiometric Quantitation of General Local Anesthetics with a New Highly Sensitive Membrane Sensor. Talanta 2022, 241, 123239. [Google Scholar] [CrossRef]
- Turyshev, E.S.; Kubasov, A.S.; Golubev, A.V.; Zhizhin, K.Y.; Kuznetsov, N.T. Potentiometric Method for Determining Biologically Non-Degradable Antimicrobial Substances. Russ. J. Inorg. Chem. 2023, 68, 1841–1847. [Google Scholar] [CrossRef]
- Stuetz, A.; Petranyi, G. Synthesis and Antifungal Activity of (E)-N-(6,6-Dimethyl-2-Hepten-4-Ynyl)-N-Methyl-1-Naphthalenemethanamine (SF 86-327) and Related Allylamine Derivatives with Enhanced Oral Activity. J. Med. Chem. 1984, 27, 1539–1543. [Google Scholar] [CrossRef] [PubMed]
- Goodfield, M.J.D.; Rowell, N.R.; Forster, R.A.; Evans, E.G.V.; Raven, A. Treatment of Dermatophyte Infection of the Finger- and Toe-Nails with Terbinafine (SF 86-327, Lamisil), an Orally Active Fungicidal Agent. Br. J. Dermatol. 1989, 121, 753–757. [Google Scholar] [CrossRef]
- Petranyi, G.; Ryder, N.S.; Stütz, A. Allylamine Derivatives: New Class of Synthetic Antifungal Agents Inhibiting Fungal Squalene Epoxidase. Science (1979) 1984, 224, 1239–1241. [Google Scholar] [CrossRef]
- Ryder, N.S. Specific Inhibition of Fungal Sterol Biosynthesis by SF 86-327, a New Allylamine Antimycotic Agent. Antimicrob. Agents Chemother. 1985, 27, 252–256. [Google Scholar] [CrossRef]
- Joly-Tonetti, N.; Legouffe, R.; Tomezyk, A.; Gumez, C.; Gaudin, M.; Bonnel, D.; Schaller, M. Penetration Profile of Terbinafine Compared to Amorolfine in Mycotic Human Toenails Quantified by Matrix-Assisted Laser Desorption Ionization–Fourier Transform Ion Cyclotron Resonance Imaging. Infect. Dis. Ther. 2024, 13, 1281–1290. [Google Scholar] [CrossRef]
- Nakamura, T.; Yoshinouchi, T.; Okumura, M.; Yokoyama, T.; Mori, D.; Nakata, H.; Yasunaga, J.; Tanaka, Y. Antifungal Potency of Terbinafine as a Therapeutic Agent against Exophiala Dermatitidis in Vitro. bioRxiv 2024. [Google Scholar] [CrossRef]
- Viana, P.G.; Figueiredo, A.B.F.; Gremião, I.D.F.; de Miranda, L.H.M.; da Silva Antonio, I.M.; Boechat, J.S.; de Sá Machado, A.C.; de Oliveira, M.M.E.; Pereira, S.A. Successful Treatment of Canine Sporotrichosis with Terbinafine: Case Reports and Literature Review. Mycopathologia 2018, 183, 471–478. [Google Scholar] [CrossRef]
- Pinto, Â.V.; Oliveira, J.C.; Costa de Medeiros, C.A.; Silva, S.L.; Pereira, F.O. Potentiation of Antifungal Activity of Terbinafine by Dihydrojasmone and Terpinolene against Dermatophytes. Lett. Appl. Microbiol. 2021, 72, 292–298. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Su, X.; Gao, W. The Preparation and Evaluation of a Hydrochloride Hydrogel Patch with an Iontophoresis-Assisted Release of Terbinafine for Transdermal Delivery. Gels 2024, 10, 456. [Google Scholar] [CrossRef]
- Cox, S.; Hayes, J.; Hamill, M.; Martin, A.; Pistole, N.; Yarbrough, J.; Souza, M. Determining Terbinafine in Plasma and Saline Using HPLC. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 607–612. [Google Scholar] [CrossRef]
- Matysová, L.; Solich, P.; Marek, P.; Havlíková, L.; Nováková, L.; Šícha, J. Separation and Determination of Terbinafine and Its Four Impurities of Similar Structure Using Simple RP-HPLC Method. Talanta 2006, 68, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Separovic, L.; Lourenço, F.R. Measurement Uncertainty Evaluation of an Analytical Procedure for Determination of Terbinafine Hydrochloride in Creams by HPLC and Optimization Strategies Using Analytical Quality by Design. Microchem. J. 2022, 178, 107386. [Google Scholar] [CrossRef]
- Gund, A.; Datar, P.A.; Kunjir, V.V. Analytical method development and validation of an allylamine antifungal drug, Terbinafine hydrochloride: A review. Int. J. Nov. Res. Dev. 2024, 9, a788–a815. [Google Scholar]
- Faridbod, F.; Ganjali, M.R.; Norouzi, P. Potentiometric PVC Membrane Sensor for the Determination of Terbinafine. Int. J. Electrochem. Sci. 2013, 8, 6107–6117. [Google Scholar] [CrossRef]
- El-Beshlawy, M.; Arida, H. Modified Screen-Printed Microchip for Potentiometric Detection of Terbinafine Drugs. J. Chem. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- El-Rahman, M.K.A.; Sayed, R.A.; El-Masry, M.S.; Hassan, W.S.; Shalaby, A. Development of Potentiometric Method for In Situ Testing of Terbinafine HCl Dissolution Behavior Using Liquid Inner Contact Ion-Selective Electrode Membrane. J. Electrochem. Soc. 2018, 165, B143–B149. [Google Scholar] [CrossRef]
- Kubasov, A.S.; Turishev, E.S.; Kopytin, A.V.; Shpigun, L.K.; Zhizhin, K.Y.; Kuznetsov, N.T. Sulfonium Closo-Hydridodecaborate Anions as Active Components of a Potentiometric Membrane Sensor for Lidocaine Hydrochloride. Inorganica Chim. Acta 2021, 514, 119992. [Google Scholar] [CrossRef]
- Alterary, S.S.; Mostafa, G.A.E.; El-Tohamy, M.F.; Elhadi, A.M.; AlRabiah, H. A Novel Potentiometric Coated Wire Sensor Based on Functionalized Polymeric CaO/ZnO Nanocomposite Synthesized by Lavandula Spica Mediated Extract for Terbinafine Determination. ChemistrySelect 2024, 9, e202401217. [Google Scholar] [CrossRef]
- Kubasov, A.S.; Turishev, E.S.; Polyakova, I.N.; Matveev, E.Y.; Zhizhin, K.Y.; Kuznetsov, N.T. The Method for Synthesis of 2-Sulfanyl Closo-Decaborate Anion and Its S-Alkyl and S-Acyl Derivatives. J. Organomet. Chem. 2017, 828, 106–115. [Google Scholar] [CrossRef]
- Golubev, A.V.; Baltovskaya, D.V.; Kubasov, A.S.; Bykov, A.Y.; Zhizhin, K.Y.; Kuznetsov, N.T. Synthesis of 1,10-Disulfanyl-Closo-Decaborate Anion and Its Disulfonium Tetraacetylamide Derivative. Russ. J. Inorg. Chem. 2024, 1–10. [Google Scholar] [CrossRef]
- Freiser, H. (Ed.) Ion-Selective Electrodes in Analytical Chemistry; Springer: Boston, MA, USA, 1978; ISBN 978-1-4684-2594-9. [Google Scholar]
- Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors. Chem. Rev. 2008, 108, 329–351. [Google Scholar] [CrossRef]
- Gordon, J. Organic Chemistry of Electrolytes Solutions; Mir: Moscow, Russia, 1979. [Google Scholar]
- Buck, R.P.; Lindner, E. Recommendations for Nomenclature of Ionselective Electrodes (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 2527–2536. [Google Scholar] [CrossRef]
- Gadzekpo, V.P.Y.; Christian, G.D. Determination of Selectivity Coefficients of Ion-Selective Electrodes by a Matched-Potential Method. Anal. Chim. Acta 1984, 164, 279–282. [Google Scholar] [CrossRef]
- Morf, W.E.; Lindner, E.; Simon, W. Theoretical Treatment of the Dynamic Response of Ion-Selective Membrane Electrodes. Anal. Chem. 1975, 47, 1596–1601. [Google Scholar] [CrossRef]
Active Membrane Ingredient | Linear Range, M | LOD, M | References |
---|---|---|---|
Terbinafine screen-printed microchip modified with MWCNTs | 1.0 × 10−2–1.0 × 10−8 | 5.0 × 10−9 | [28] |
Ion-pair terbinafine and tetraphenyl borate functionalized CaO/ZnO | 1.0 × 10−2–7.0 × 10−6 | 6.5 × 10−6 | [27] |
Sodium tetraphenylborate | 1.0 × 10−2–1.0 × 10−6 | 7.9 × 10−7 | [29] |
Ion-pair terbinafine and tetraphenyl borate functionalized CaO/ZnO | 1.0 × 10−2–5.0 × 10−9 | 2.5 × 10−10 | [31] |
№ | Membrane Composition, % wt | Linear Range, M | Lower Detection Limit, M | Slope, mV/Decade | ||
---|---|---|---|---|---|---|
1,10-B10H8(S(n-C18H37)2)2 | BBPA | PVC | ||||
1 | 1.0 | 70.0 | 29.0 | ≈10−8–10−2 | ≈5.0 × 10−9 | 60 ± 2 |
2 | 1.2 | 69.8 | 29.0 | ≈10−8–10−2 | ≈6.0 × 10−9 | 59 ± 1 |
3 | 1.4 | 69.6 | 29.0 | ≈2.0 × 10−8–10−2 | ≈7.0 × 10−9 | 58.2 ± 0.5 |
4 | 1.6 | 69.4 | 29.0 | ≈3.0 × 10−8–10−2 | ≈8.0 × 10−9 | 57.7 ± 0.3 |
5 | 1.8 | 69.2 | 29.0 | 4.0 × 10−8–10−2 | 1.0 × 10−8 | 57.2 ± 0.2 |
6 | 2.0 | 69.0 | 29.0 | 8.0 × 10−8–10−2 | 3.0 × 10−8 | 55.9 ± 0.2 |
7 | 2.2 | 68.8 | 29.0 | 10−7–10−2 | 5.0 × 10−8 | 53.6 ± 0.2 |
8 | 2.4 | 68.6 | 29.0 | 3.0 × 10−7–10−2 | 7.0 × 10−8 | 52.3 ± 0.2 |
Interfering Cation | lgKpot Terbinafine/Cation | ||
---|---|---|---|
MPM | Middle | SSM | |
Li+ | −3.41 | −4.12 | −4.83 |
Na+ | −3.37 | −3.85 | −4.33 |
K+ | −3.80 | −3.91 | −4.02 |
Rb+ | −3.16 | −3.96 | −4.76 |
Cs+ | −3.63 | −4.18 | −4.73 |
Ca2+ | −4.03 | −4.64 | −5.25 |
Sr2+ | −4.17 | −4.73 | −5.29 |
Ba2+ | −4.45 | −5.02 | −5.59 |
NH4+ | −2.52 | −3.29 | −4.06 |
Glycine | −3.32 | −3.72 | −4.12 |
Valine | −3.42 | −3.68 | −3.94 |
β-Alanine | −3.25 | −3.52 | −3.79 |
L, D-Tyrosine | −3.01 | −3.21 | −3.41 |
Tetrabutylammonium+ (TBA+) | −2.32 | −3.01 | −3.70 |
Glucose | −4.56 | −4.75 | −4.94 |
Fructose | −4.66 | −4.78 | −4.90 |
Sucrose | −4.63 | −4.82 | −5.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turyshev, E.S.; Golubev, A.V.; Bykov, A.Y.; Zhizhin, K.Y.; Kuznetsov, N.T. Preparation of a New Active Component 1,10-B10H8(S(C18H37)2)2 for Potentiometric Membranes for the Determination of Terbinafine Hydrochloride. Inorganics 2025, 13, 35. https://doi.org/10.3390/inorganics13020035
Turyshev ES, Golubev AV, Bykov AY, Zhizhin KY, Kuznetsov NT. Preparation of a New Active Component 1,10-B10H8(S(C18H37)2)2 for Potentiometric Membranes for the Determination of Terbinafine Hydrochloride. Inorganics. 2025; 13(2):35. https://doi.org/10.3390/inorganics13020035
Chicago/Turabian StyleTuryshev, Eugeniy S., Alexey V. Golubev, Alexander Yu. Bykov, Konstantin Yu. Zhizhin, and Nikolay T. Kuznetsov. 2025. "Preparation of a New Active Component 1,10-B10H8(S(C18H37)2)2 for Potentiometric Membranes for the Determination of Terbinafine Hydrochloride" Inorganics 13, no. 2: 35. https://doi.org/10.3390/inorganics13020035
APA StyleTuryshev, E. S., Golubev, A. V., Bykov, A. Y., Zhizhin, K. Y., & Kuznetsov, N. T. (2025). Preparation of a New Active Component 1,10-B10H8(S(C18H37)2)2 for Potentiometric Membranes for the Determination of Terbinafine Hydrochloride. Inorganics, 13(2), 35. https://doi.org/10.3390/inorganics13020035