Recent Research on the Applications of Amorphous Materials
Conflicts of Interest
References
- Sun, Y.; Concustell, A.; Greer, A. Thermomechanical Processing of Metallic Glasses: Extending the Range of the Glassy State. Nat. Rev. Mater. 2016, 1, 16039. [Google Scholar] [CrossRef]
- Yu, H.; Wang, W.; Samwer, K. The β relaxation in metallic glasses: An overview. Prog. Mater. Sci. 2013, 16, 183–191. [Google Scholar] [CrossRef]
- Schroers, J. Processing of Bulk Metallic Glass. Adv. Mater. 2010, 22, 1566–1597. [Google Scholar] [CrossRef]
- Feng, Z.; Geng, H.; Zhuang, Y.; Li, P. Progress, Applications, and Challenges of Amorphous Alloys: A Critical Review. Inorganics 2024, 12, 232. [Google Scholar] [CrossRef]
- Inoue, A.; Takeuchi, A. Recent Progress in Bulk Glassy Alloys. Mater. Trans. 2002, 43, 1892–1906. [Google Scholar] [CrossRef]
- Amigo, N.; Wachter, J.; Leiva, P. Impact-Induced Plastic Deformation in CuZr Metallic Glass and MG/Cu Composites. Inorganics 2025, 13, 141. [Google Scholar] [CrossRef]
- Cheng, Y.; Ma, E. Atomic-Level Structure and Structure–Property Relationship in Metallic Glasses. Prog. Mater. Sci. 2011, 56, 379–473. [Google Scholar] [CrossRef]
- Jiang, L.; Fan, X.; Li, Q.; Li, X.; Jiang, T.; Wei, Q. Enhanced Antimicrobial and Biomedical Properties of Fe-Based Bulk Metallic Glasses Through Ag Addition. Inorganics 2025, 13, 105. [Google Scholar] [CrossRef]
- Liu, L.; Hasan, M.; Kumar, G. Metallic Glass Nanostructures: Fabrication, Properties, and Applications. Nanoscale 2014, 6, 2027–2036. [Google Scholar] [CrossRef]
- Vijayalakshmi, L.; Meera, S.; Vijay, R.; Palle, K.; Ramesh, P.; Kwon, S.; Raju, G. Nickel Ions Activated PbO–GeO2 Glasses for the Application of Electrolytes and Photonic Devices. Inorganics 2024, 12, 215. [Google Scholar] [CrossRef]
- Venugopal, R.; Bishnoi, S.; Singh, S.; Zaki, M.; Grover, H.; Bauchy, M.; Agarwal, M.; Krishnan, N. Artificial Intelligence and Machine Learning in Glass Science and Technology: 21 Challenges for the 21st Century. Int. J. Appl. Glass Sci. 2021, 121, 277–292. [Google Scholar] [CrossRef]
- Wisitsorasak, A.; Wolynes, P. On the Strength of Glasses. Proc. Natl. Acad. Sci. USA 2012, 109, 16068–16072. [Google Scholar] [CrossRef]
- Tipeev, A.; Zanotto, E.; Rino, J. Crystal Nucleation Kinetics in Supercooled Germanium: MD Simulations Versus Experimental Data. J. Phys. Chem. B 2020, 124, 7979–7988. [Google Scholar] [CrossRef]
- Hirotsu, Y.; Hanada, T.; Ohkubo, T.; Makino, A.; Yoshizaw, Y.; Nieh, T. Nanoscale Phase Separation in Metallic Glasses Studied by Advanced Electron Microscopy Techniques. Intermetallics 2004, 12, 1081–1088. [Google Scholar] [CrossRef]
- Deng, M.; Wang, M.; Rao, Y.; Xu, Y.; Wu, D.; Lin, S.; Lu, P. Discovering Novel Glass with Robust Crystallization Resistance via Amorphous Phase Separation Engineering. Inorganics 2024, 12, 149. [Google Scholar] [CrossRef]
- Ramos, J.; Matsumoto, Y.; Ávila, A.; Romero, G.; Meneses, M.; Morales, A.; Luna, J.A.; Flores, J.; Minquiz, G.; Moreno, M. Luminescence Study of Hydrogenated Silicon Oxycarbide (SiOxCy:H) Thin Films Deposited by Hot Wire Chemical Vapor Deposition as Active Layers in Light Emitting Devices. Inorganics 2024, 12, 298. [Google Scholar] [CrossRef]
- Robertson, J. High Dielectric Constant Oxides. Eur. Phys. J.-Appl. Phys. 2004, 28, 265–291. [Google Scholar] [CrossRef]
- Medvedeva, J.; Buchholz, D.; Chang, R. Recent Dvances in Understanding the Structure and Properties of Amorphous Oxide Semiconductors. Adv. Electron. Mater. 2017, 3, 1700082. [Google Scholar] [CrossRef]
- Savage, J. Optical Properties of Chalcogenide Glasses. J. Non-Cryst. Solids 1982, 47, 101–115. [Google Scholar] [CrossRef]
- Velandia, O.; Torres, A.; Morales, A.; Hernández, L.; Luna, A.; Monfil, K.; Flores, J.; Minquiz, G.; Jiménez, R.; Moreno, M. Uncooled Microbolometers Based on Nitrogen-Doped Hydrogenated Amorphous Silicon-Germanium (a-SiGe:H,N). Inorganics 2025, 13, 126. [Google Scholar] [CrossRef]
- Robertson, J. Deposition Mechanism of Hydrogenated Amorphous Silicon. J. Appl. Phys. 2000, 87, 2608–2617. [Google Scholar] [CrossRef]
- Xiao, X.; Sun, S.; Jiang, W.; Qin, X.; Liu, Q.; Lao, Y. Nanocrystalline–Amorphous Transition in ZrN Nanofilms Induced by Helium Accumulation at Grain Boundaries. Inorganics 2025, 13, 158. [Google Scholar] [CrossRef]
- Banhart, F. Structural Transformations in Carbon Nanoparticles Induced by Electron Irradiation. Phys. Solid State 2002, 44, 399–404. [Google Scholar] [CrossRef]
- Matsunaga, A.; Kinoshita, C.; Nakai, K.; Tomokiyo, Y. Radiation-Induced Amorphization and Swelling in Ceramics. J. Nucl. Mater. 1991, 179−181, 457–460. [Google Scholar] [CrossRef]
- Khiara, N.; Coulombier, M.; Raskin, J.; Bréchet, Y.; Pardoen, T.; Onimus, F. Helium Nano-Bubbles in Copper Thin Films Slows Down Creep Under Ion Irradiation. Acta Mater. 2025, 288, 120854. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Yin, I.X.; Yu, O.Y.; Chan, A.K.Y.; Chu, C.H. Preventing Dental Caries with Calcium-Based Materials: A Concise Review. Inorganics 2024, 12, 253. [Google Scholar] [CrossRef]
- Jones, J. Review of Bioactive Glass: From Hench to Hybrids. Acta Biomater. 2013, 9, 4457–4486. [Google Scholar] [CrossRef]
- De, J.; Valdés, S.; Morales, A.; Jiménez, L.; Correa, R.; Lara, E.; Toral, V.; Chanes, O.; Velázquez, U.; Morales, R. The Growth-Inhibitory Effect of Glass Ionomer Liners Reinforced with Fluoride-Modified Nanotubes. Inorganics 2025, 13, 190. [Google Scholar] [CrossRef]
- Vasluianu, R.; Bobu, L.; Lupu, I.; Antohe, M.; Bulancea, B.; Moldovanu, A.; Stamatin, O.; Holban, C.; Dima, A. Innovative Smart Materials in Restorative Dentistry. J. Funct. Biomater. 2025, 16, 318. [Google Scholar] [CrossRef]
- Wang, C.; Makvandi, P.; Zare, E.; Tay, F.; Niu, L. Advances in Antimicrobial Organic and Inorganic Nanocompounds in Biomedicine. Adv. Ther. 2020, 3, 2000024. [Google Scholar] [CrossRef]
- Yan, S.; Abhilash, K.; Tang, L.; Yang, M.; Ma, Y.; Xia, Q.; Guo, Q.; Xia, H. Research Advances of Amorphous Metal Oxides in Electrochemical Energy Storage and Conversion. Small 2019, 15, 1804371. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Shi, Y.; Lu, S.; Yu, Y.; Zhang, B. Amorphous nanomaterials in electrocatalytic water splitting. Chin. J. Catal. 2021, 42, 1287–1296. [Google Scholar] [CrossRef]
- Ji, S.; Kim, S.; Song, W.; Yoon, Y.; Myung, S.; Lim, J.; Jung, H.; Choi, S.; An, K.; Lee, S. Extraordinary Lithium Storage Capacity and Lithiation Mechanism of Partially Amorphous Molybdenum Sulfide on Chemically Exfoliated Graphene. Electrochim. Acta 2020, 354, 136636. [Google Scholar] [CrossRef]
- Falqui, A.; Loche, D.; Casu, A. In Situ TEM Crystallization of Amorphous Iron Particles. Crystals 2020, 10, 41. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P. Recent Research on the Applications of Amorphous Materials. Inorganics 2025, 13, 379. https://doi.org/10.3390/inorganics13120379
Li P. Recent Research on the Applications of Amorphous Materials. Inorganics. 2025; 13(12):379. https://doi.org/10.3390/inorganics13120379
Chicago/Turabian StyleLi, Pengwei. 2025. "Recent Research on the Applications of Amorphous Materials" Inorganics 13, no. 12: 379. https://doi.org/10.3390/inorganics13120379
APA StyleLi, P. (2025). Recent Research on the Applications of Amorphous Materials. Inorganics, 13(12), 379. https://doi.org/10.3390/inorganics13120379
