Towards Sustainable Processing of Chromite Resources: A Review of Methods for Magnesium and Platinum-Group Metal Extraction
Abstract
1. Introduction
- The gradual depletion of rich ores and the need to process low-grade and refractory deposits;
- Stricter environmental regulations related to tailings storage, waste management, and reducing greenhouse gas emissions;
- Growing global demand for associated elements such as magnesium (used in metallurgy, construction, chemical, and pharmaceutical industries) and PGMs (applied in automotive catalysts, electronics, and jewelry).
2. Characteristics of Chromite Raw Materials
2.1. Mineralogical and Chemical Composition
2.2. Magnesium and PGM Content and Occurrence
2.3. Challenges of Comprehensive Recovery
- Fine dissemination of minerals. Chromospinelides are associated with olivine, serpentine, and pyroxenes, reducing the efficiency of flotation and gravity separation [35].
- High energy demand for grinding. Ultra-fine grinding is required to liberate minerals, leading to higher costs and decreased recoverability [36].
- Problems of comprehensive utilization. Valuable by-products (e.g., platinum-group metals) are often lost to tailings due to the lack of specialized recovery technologies.
- Environmental risks. Traditional ferrochrome smelting generates toxic Cr(VI) compounds, restricting the implementation of integrated processing technologies [37].
3. Traditional Methods of Chromite Processing
3.1. Pyrometallurgical Technologies
3.2. Hydrometallurgical Technologies
4. Modern Approaches to Integrated Processing
4.1. Magnesium Recovery
4.2. Recovery of Platinum-Group Metals (PGMs)
- Localization of reduction reactions in the cathode zone, improving metal concentration;
- The use of diverse reductants such as carbon, methane, and hydrogen;
- Controlled slag chemistry and higher metal recovery.
5. Biotechnological Methods for the Extraction of Platinum-Group Metals and Magnesium from Chromite Ores in the Context of Green Metallurgy
6. Aspects of Green Chemistry in Chromite Processing
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IBM. Mineral Year Book, Part III: Mineral Reviews, 53rd ed.; U.S. Department of the Interior, Bureau of Mines: Washington, DC, USA, 2014; p. 1.
- Raghu Kumar, C.; Rama Murthy, Y.; Bhoja, S.K. Chapter 3–Chromite Ore Beneficiation: Prospects and Challenges. In Mineral Processing; Rajendran, S., Murty, C.V.G.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 79–116. ISBN 978-0-12-823149-4. [Google Scholar] [CrossRef]
- Yan, J.X.; Chen, J.X.; Hu, L. Metallurgy of Chromium; Metallurgical Industry Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2024.
- Prasad, U. Chapter 4–Metallic Mineral Deposits. In Economic Geology, Economic Mineral Deposits, 2nd ed.; CBS Publication: Delhi, India, 2013; p. 48. [Google Scholar]
- Nafziger, R.H. A Review of the Deposits and Beneficiation of Lower-Grade Chromite. J. S. Afr. Inst. Min. Metall. 1982, 82, 205–226. [Google Scholar]
- Kenzhaliev, B.K.; Kul’deev, E.I.; Luganov, V.A.; Bondarenko, I.V.; Motovilov, I.Y.; Temirova, S.S. Production of Very Fine, Spherical, Particles of Ferriferous Pigments from the Diatomaceous Raw Material of Kazakhstan. Glass Ceram. 2019, 76, 194–198. [Google Scholar] [CrossRef]
- A Deep Dive into the Richest Chromium Producing Countries in 2023: Intro: Chromium Producing Countries. Available online: https://iran-chromite.com/dominating-chromium-production-the-top-chromium-producing-countries/ (accessed on 13 July 2025).
- Cramer, L.A.; Basson, J.; Nelson, L.R. The Impact of Platinum Production from UG2 Ore on Ferrochrome Production in South Africa. J. S. Afr. Inst. Min. Metall. 2004, 104, 517–527. [Google Scholar]
- Kleynhans, E.L.J. Development and Improvement of Pre-Treatment Technologies to Enhance Ferrochrome Production; North-West University: Potchefstroom, South Africa, 2016. [Google Scholar]
- Ospanov, Y.A.; Kvyatkovskiy, S.A.; Kozhakhmetov, S.M.; Sokolovskaya, L.V.; Semenova, A.S.; Dyussebekova, M.; Shakhalov, A.A. Slag heterogeneity of autogenous copper concentrates smelting. Can. Metall. Q. 2023, 62, 594–601. [Google Scholar] [CrossRef]
- Beukes, J.P.; Van Zyl, P.G.; Ras, M. Treatment of Cr(VI)-Containing Wastes in the South African Ferrochrome Industry—A Review of Currently Applied Methods. J. S. Afr. Inst. Min. Metall. 2012, 112, 347–352. [Google Scholar]
- Kenzhaliev, B.K.; Kvyatkovskii, S.A.; Kozhakhmetov, S.M.; Sokolovskaya, L.V.; Kenzhaliev, E.B.; Semenova, A.S. Determination of Optimum Production Parameters for Depletion of Balkhash Copper-Smelting Plant Dump Slags. Metallurgist 2019, 63, 759–765. [Google Scholar] [CrossRef]
- Volodin, V.N.; Abdulvaliyev, R.A.; Trebukhov, S.A.; Nitsenko, A.V.; Linnik, K.A. Recycling of Beryllium, Manganese, and Zirconium from Secondary Alloys by Magnesium Distillation in Vacuum. Kompleks. Ispolz. Miner. Syra = Complex Use Miner. Resour. 2024, 331, 90–100. [Google Scholar] [CrossRef]
- Ibraev, I.K.; Ibraeva, O.T.; Aitkenov, N.B. An Annealing-Free Method for Processing High-Moisture Iron-Containing Sludge of Metallurgical Production. Kompleks. Ispolz. Miner. Syra = Complex Use Miner. Resour. 2025, 333, 59–70. [Google Scholar] [CrossRef]
- Pašava, J.; Knésl, I.; Vymazalová, A.; Vavřín, I.; Gurskaya, L.I.; Kolantsev, L.R. Geochemistry and Mineralogy of Platinum-Group Elements (PGE) in Chromites from Centralnoye I, Polar Urals, Russia. Geosci. Front. 2011, 2, 81–85. [Google Scholar] [CrossRef]
- Legendre, O.; Augé, T. Mineralogy of Platinum-Group Mineral Inclusions in Chromitites from Different Ophiolite Complexes. In Metallogeny of Basic and Ultrabasic Rocks; Gallagher, M.J., Ixer, R.A., Neary, C.R., Prichard, H.M., Eds.; Springer: Amsterdam, The Netherlands, 1986; pp. 361–372. [Google Scholar]
- Economou-Eliopoulos, M. Platinum-Group Element Distribution in Chromite Ores from Ophiolite Complexes: Implications for Their Exploration. Ore Geol. Rev. 1996, 11, 363–381. [Google Scholar] [CrossRef]
- Zaccarini, F.; Garuti, G.; Bakker, R.J.; Pushkarev, E.V. Electron Microprobe and Raman Spectroscopy Investigation of an Oxygen-Bearing Pt–Fe–Pd–Ni–Cu Compound from Nurali Chromitite (Southern Urals, Russia). Microsc. Microanal. 2015, 21, 1070–1079. [Google Scholar] [CrossRef]
- Grieco, G.; Diella, V.; Chaplygina, N.L.; Savelieva, G.N. Platinum Group Elements Zoning and Mineralogy of Chromitites from the Cumulate Sequence of the Nurali Massif (Southern Urals, Russia). Ore Geol. Rev. 2007, 30, 257–276. [Google Scholar] [CrossRef]
- Garuti, G.; Pushkarev, E.; Zaccarini, F. Composition and Paragenesis of Pt-Alloys from Chromitites of the Ural-Alaskan-Type Kitlim and Uktus Complexes, Northern and Central Urals, Russia. Can. Mineral. 2002, 40, 1127–1146. [Google Scholar] [CrossRef]
- Setlhabi, B.; Popoola, A.; Tshabalala, L.; Adeleke, A. Evaluation of Advanced Gravity and Magnetic Concentration of a PGM Tailings Waste for Chromite Recovery. Iran. J. Chem. Chem. Eng. 2019, 38, 61–71. [Google Scholar]
- Latypov, R.; Chistyakova, S.Y.; Letsoele, C. Massive Chromitites of the Bushveld Complex, South Africa: A Critical Review of Existing Hypotheses. Earth Sci. Rev. 2024, 256, 104858. [Google Scholar] [CrossRef]
- Motzer, W.E.; Engineers, T. Chemistry, Geochemistry, and Geology of Chromium and Chromium Compounds. In Chromium(VI) Handbook; CRC Press: Boca Raton, FL, USA, 2004; pp. 23–88. [Google Scholar]
- Nriagu, J.O.; Nieboer, E. Chromium in the Natural and Human Environments; John Wiley & Sons: Hoboken, NJ, USA, 1988; Volume 20. [Google Scholar]
- Melcher, F.; Grum, W.; Thalhammer, T.V.; Thalhammer, O.A.R. The Giant Chromite Deposits at Kempirsai, Urals: Constraints from Trace Elements (PGE, REE) and Isotope Data. Miner. Depos. 1999, 34, 250–270. [Google Scholar] [CrossRef]
- Sorikrat, S.; Laskowski, J. Flotation of Chromite. Trans. Inst. Min. Metall. 1973, 82, 207–213. [Google Scholar]
- Konstantopoulou, G.; Economou-Eliopoulos, M. Distribution of Platinum-Group Elements and Gold within the Vourinos Chromitite Ores, Greece. Econ. Geol. 1991, 86, 1672–1682. [Google Scholar] [CrossRef]
- Kravchenko, G.G. Geological Position and Structure of Chromite Deposits in the Ural Mountains. In Chromitites; UNESCO IGCP-197, Metallogeny of Ophiolites; Petrascheck, W., Ed.; Theophrastus Publications: Athens, Greece, 1986; pp. 3–21. [Google Scholar]
- Stowe, C.W. Compositions and Tectonic Setting of Chromite Deposits through Time. Econ. Geol. 1994, 89, 528–546. [Google Scholar] [CrossRef]
- Zhukova, I.; Stepanov, A.; Jiang, S.-Y.; Zhimulev, F.I.; Gurevich, D.; Polonyankin, A.; Lavrenchuk, A.; Kotlyarov, A. Platinum-Group Elements Geochemistry of Chromite from Kondyor Ultramafic Intrusion, Siberia: Re-Evaluation of Factors Controlling PGE Content of Intrusive Chromite. Chem. Geol. 2025, 691, 122871. [Google Scholar] [CrossRef]
- Constantinides, C.C.; Kingston, G.A.; Fisher, P.C. The occurrence of platinum group minerals in the chromitites of the Kokkinorotsos chrome mine, Cyprus. In Ophiolites, Proceedings of the International Ophiolite Symposium, Cyprus 1979; Panayiotou, A., Ed.; Geological Survey Department: Nicosia, Cyprus, 1980; pp. 93–101. [Google Scholar]
- Stockman, H.W.; Hlava, P.F. Platinum-group minerals in Alpine chromitites from southwestern Oregon. Econ. Geol. 1984, 79, 491–508. [Google Scholar] [CrossRef]
- Augé, T.; Johan, Z. Comparative study of chromite deposits from Troodos, Vourinos, North Oman and New Caledonia ophiolites. In Mineral Deposits within the European Community; Boissonnas, J., Omenetto, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 267–288. [Google Scholar]
- Yaro, S.A. Upgrading of Muro-Toto iron ore gravity pre-concentrate by Reverse Froth Floatation Method. J. Raw Mater. Res. 2004, 1, 54–59. [Google Scholar]
- Burke, T.; Fagliano, J.; Goldoft, M.; Hazen, R.E.; Tglewicz, R.; Mckee, T. Chromite ore processing residue in Hudson County, New Jersey. Environ. Health Perspect. 1991, 92, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.S.; Xie, G. The study of the behavior of chromium ore in roasting process. Min. Metall. Eng. 2006, 26, 57–60. [Google Scholar]
- Gu, F.; Wills, B.A. Chromite—Mineralogy and Processing. Miner. Eng. 1988, 1, 235–240. [Google Scholar] [CrossRef]
- Beukes, J.P.; du Preez, S.P.; van Zyl, P.G.; Paktunc, D.; Fabritius, T.; Päätalo, M.; Cramer, M. Review of Cr(VI) Environmental Practices in the Chromite Mining and Smelting Industry—Relevance to Development of the Ring of Fire, Canada. J. Clean. Prod. 2017, 165, 874–889. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.H.; Wang, Z.K.; Chen, J.Y. Green chemistry and chromium salt industry—A new generation of industrial revolution. Chem. Ind. Eng. Prog. 1986, 10, 172–178. [Google Scholar]
- Murthy, Y.; Tripathy, S. Process optimization of a chrome ore gravity concentration plant for sustainable development. J. S. Afr. Inst. Min. Metall. 2020, 120, 26–268. [Google Scholar] [CrossRef]
- Seifelnasr, A.A.; Tammam, T.; Abouzeid, A.Z.M. Gravity concentration of Sudanese chromite ore using laboratory shaking table. Physicochem. Probl. Miner. Process. 2012, 48, 271–280. [Google Scholar]
- Samata, S.; Misra, R.N.; Bhatnagar, P.P. Thermal Beneficiation of Low-Grade Chrome Ore from Enukonda Deposits, West Godavari District, Andhra Pradesh. NML Tech. J. 1964, 6, 12–16. [Google Scholar]
- Gallios, G.P.; Deliyanni, E.A.; Peleka, E.N.; Matis, K.A. Flotation of chromite and serpentine. Sep. Purif. Technol. 2007, 55, 232–237. [Google Scholar] [CrossRef]
- Maulik, S.; Bhattacharyya, K. Beneficiation of low-grade chromite ores from Sukinda. In Proceedings of the International Seminar on Mineral Processing Technology (MPT-2005), Dhanbad, India, 6–8 January 2005. [Google Scholar]
- Basson, J.; Daavittila, J. High carbon ferrochrome technology. In Handbook of Ferroalloys; Elsevier: Amsterdam, The Netherlands, 2013; pp. 317–363. [Google Scholar]
- Baisanov, S.; Shabanov, E.Z.; Grigorovich, K.V.; Toleukadyr, R.T.; Inkarbekova, I.S. Smelting options for carbon ferrochrome based on ore raw materials, middlings and their technological evaluation. Kompleks. Ispolz. Miner. Syra = Complex Use Miner. Resour. 2022, 320, 51–59. [Google Scholar] [CrossRef]
- Akhmadiyeva, N.; Abdulvaliyev, R.; Gladyshev, S.; Sukurov, B.; Abikak, Y.; Manapova, A.; Bakhytuly, N. Optimizing technological parameters for chromium extraction from chromite ore beneficiation tailings. Minerals 2025, 15, 555. [Google Scholar] [CrossRef]
- Farrow, C.J.; Burkin, A.R. Alkali pressure leaching of chromium (III) oxide of chromite mineral. Br. Min. Metall. 1975, 20, 20–27. [Google Scholar]
- Xu, H.B.; Zhang, Y.; Li, Z.H. A Pressure Leaching of Chromite Sodium Chromate Cleaner Production Methods. China Patent 101817561A, 1 September 2010. [Google Scholar]
- Wang, Z.H.; Du, H.; Wang, S.N.; Zheng, S.L.; Zhang, Y.; Hwang, S.; Kim, N.S.; Jeong, T.E. Electrochemical enhanced oxidative decomposition of chromite ore in highly concentrated KOH solution. Miner. Eng. 2014, 57, 16–24. [Google Scholar] [CrossRef]
- Ayinla, K.I.; Baba, A.A.; Oyewumi-Musa, R.T.; Tripathy, B.C.; Anafi, G.A.; Dwari, R.K. Energy saving chemical beneficiation method of improving low grade Nigeria chromite ore for use in steel industries. FUOYE J. Eng. Technol. 2023, 8, 497–502. [Google Scholar] [CrossRef]
- Liu, C.J.; Qi, J.; Jiang, M.F. Experimental study on sulfuric acid leaching behavior of chromite with different temperature. Adv. Mater. Res. 2012, 361, 628–631. [Google Scholar] [CrossRef]
- Shi, P.Y.; Liu, S.L. Experimental study on sulphuric acid leaching of chromite. J. Chin. Rare Earth Soc. 2002, 20, 472–474. [Google Scholar]
- Ciftçi, H.; Arslan, B.; Bilen, A.; Arsoy, Z.; Ersoy, B. Extraction of magnesium from chromite beneficiation tailings. Bull. Miner. Res. Explor. 2021, 164, 251. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, W.; Chu, S.; Liu, Z.; Wu, Z.; Lan, Y.; Galvita, V.V.; Zhang, L.; Su, X. Sufficient extraction of Cr from chromium ore processing residue (COPR) by selective Mg removal. J. Hazard. Mater. 2022, 440, 129754. [Google Scholar] [CrossRef]
- Kallam, V.K.; Vadapalli, S.; Singh, V.; Kapure, G. Processing of peridotite rocks of chromite ore overburden into magnesium salts and micro silica. Min. Metall. Explor. 2020, 37, 1253–1263. [Google Scholar] [CrossRef]
- Auyeshov, A.A.; Eskibayeva, C.Z.; Ibrayeva, A.M.; Arynov, K.T.; Dikanbayeva, A.K. Resource-efficient technology for the utilization of serpentine technogenic waste with the production of magnesium oxide. Int. J. Biol. Chem. 2025, 18, 112–118. [Google Scholar] [CrossRef]
- Kushakova, L.B.; Reznichenko, V.V.; Kospanov, M.M.; Suleymanova, G.A. Method for Processing Magnesium-Containing Materials. RU Patent 23692, 15 February 2011. [Google Scholar]
- Baloyi, N.P.; Nheta, W.; Sibanda, V.; Safari, M. Mineralogical insights into PGM recovery from Middle Group (1–4) chromite tailings. Minerals 2024, 14, 924. [Google Scholar] [CrossRef]
- Ptitsyn, A.M.; Isaev, A.S.; Savin, A.G.; Paretsky, V.M. Method for Processing Materials Containing Platinum Group Metals. RU Patent 2618282, 3 March 2017. [Google Scholar]
- Marakushev, A.A.; Shapovalov, Y.B.; Stolyarova, T.A. Method for the Extraction of Platinum Group Metals. RU Patent 2224034, 20 February 2004. [Google Scholar]
- Gomanov, E.S.; Ortyakov, S.S.; Rublevsky, I.A. Method for the Extraction of Platinum Group Metals. RU Patent 2360984, 10 July 2009. [Google Scholar]
- Bessarabov, D.G.; Van Kaam, T.P.M.; Du Preez, S.P. Hydrogen Plasma Smelting Reduction for Sustainable Ferrochrome Production. Plasma Chem. Plasma Process. 2025, 45, 1045–1062. [Google Scholar]
- Taylor, P.R. Plasma Technology in Extractive and Process Metallurgy. Miner. Eng. 1995, 8, 1081–1097. [Google Scholar] [CrossRef]
- Sanjay, P.; Tangstad, M.; Beukes, J.P.; Ringdalen, E.; Van Zyl, P.G. High-Carbon Ferrochrome Production Using Plasma Arc Technology. J. Sustain. Metall. 2023, 11, 450–465. [Google Scholar]
- Petrov, G.V.; Andreev, Y.V.; Greiver, T.N.; Kovalev, V.N. Method for the Extraction of Platinum Group Metals from Platinum-Containing Raw Materials. RU Patent 2415954, 10 April 2011. [Google Scholar]
- Spooren, J.; Abo Atia, T. Combined microwave assisted roasting and leaching to recover platinum group metals from spent automotive catalysts. Miner. Eng. 2020, 146, 106153. [Google Scholar] [CrossRef]
- Yakoumis, I.; Panou, M.; Moschovi, A.M.; Panias, D. Recovery of platinum group metals from spent automotive catalysts: A review. Clean. Eng. Technol. 2021, 3, 100112. [Google Scholar] [CrossRef]
- Kanari, N.; Allain, E.; Joussemet, R.; Mochón, J.; Ruiz-Bustinza, I.; Gaballah, I. An overview study of chlorination reactions applied to the primary extraction and recycling of metals and to the synthesis of new reagents. Thermochim. Acta 2009, 495, 42–50. [Google Scholar] [CrossRef]
- Taninouchi, Y.K.; Sunagawa, K.; Okabe, T.H.; Nakano, H. Extraction of platinum using ferric-chloride-vapor-based chlorination followed by hydrochloric acid leaching. J. Sustain. Metall. 2025, 11, 1835–1847. [Google Scholar] [CrossRef]
- Shemi, A.; Simate, G.; Ndlovu, S. Optimized Bioleaching Pre-treatment of UG-2 PGM Material. J. Sustain. Metall. 2024, 10, 525–541. [Google Scholar] [CrossRef]
- Chipise, L.; Ndlovu, S.; Shemi, A.; Moodley, S.S.; Kumar, A.; Simate, G.S.; Yah, C.S. Towards bioleaching of PGMS. Miner. Eng. 2023, 202, 108291. [Google Scholar] [CrossRef]
- Mpinga, C.N.; Eksteen, J.J.; Aldrich, C.; Dyer, L. Atmospheric Leach Process of High-Chromitite PGM-Bearing Oxidized Mineralized Ore through Single-Stage and Two-Stage Techniques. Miner. Eng. 2018, 125, 216–223. [Google Scholar] [CrossRef]
- Stanković, S.; Atanacković, N.; Štrbački, J.; Kovač, S.; Šarić, K.; Nikšić, Đ.; Schippers, A. Bioleaching and Chemical Leaching of Magnesium from Serpentinites (Zlatibor Mt. Ophiolite Massif, Serbia) with Potential Application in Mineral Carbonation Process for CO2 Sequestration. Front. Microbiol. 2025, 16, 1646341. [Google Scholar] [CrossRef]
- Taheri, B.; Larachi, F. Mineral-Based Magnesium Extraction Technologies: Current and Future Practices. Processes 2025, 13, 2945. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Peng, B.; Chai, L.; Wu, B.; Wu, R. Biotreatment of chromite ore processing residue by Pannonibacter phragmitetus BB. Environ. Sci. Pollut. Res. Int. 2013, 20, 5593–5602. [Google Scholar] [CrossRef]
- Shan, B.; Hao, R.; Zhang, J.; Li, J.; Ye, Y.; Xu, H.; Lu, A. Bioremediation Potential of Cr(VI) by Lysinibacillus cavernae CR-2 Isolated from Chromite-Polluted Soil: A Promising Approach for Cr(VI) Detoxification. Geomicrobiol. J. 2024, 41, 634–647. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, Y.; Li, Z.; Zhang, Y.; Zhao, Z. Green Metallurgical Processing of Chromite. Environ. Prog. Sustain. Energy 2010, 29, 175–182. [Google Scholar] [CrossRef]
- Zhang, B.; Shi, P.; Jiang, M. Advances towards a Clean Hydrometallurgical Process for Chromite. Minerals 2016, 6, 7. [Google Scholar] [CrossRef]
- Pandey, K.; Saharan, B.S.; Kumar, R.; Jabborova, D.; Duhan, J.S. Modern-Day Green Strategies for the Removal of Chromium from Wastewater. J. Xenobiot. 2024, 14, 1670–1696. [Google Scholar] [CrossRef]
- Xu, H.; Li, J.; Wang, Z.; Zhang, T.; Liu, Y. Effective Cr(VI) reduction and immobilization in chromite ore processing residue (COPR) contaminated soils by ferrous sulfate and digestate: A comparative investigation with typical reducing agents. Ecotoxicol. Environ. Saf. 2023, 265, 115522. [Google Scholar] [CrossRef]
- Lan, Y.; Zhang, L.; Li, X.; Liu, W.; Su, X.; Lin, Z. Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe2+(Cr3+X, Fe3+2-x)O4 and its magnetic separation. Sci. Total Environ. 2022, 813, 152637. [Google Scholar] [CrossRef]



| Form | Example Minerals | Mg Content, % | Significance for Processing | Ref. |
|---|---|---|---|---|
| Structural Mg in spinel (magnesiochromite) | MgCr2O4 (isomorphic substitution of Fe2+ in chromite) | 1–5% MgO in chromite | Difficult to extract, as Mg is strongly bound within the crystal lattice | [24,25] |
| Silicate minerals of host rocks | Olivine ((Mg,Fe)2SiO4), serpentine (Mg3Si2O5(OH)4), pyroxene (MgSiO3) | Main Mg source, up to 10–15% MgO | Easier to process via hydrometallurgical methods (alkaline leaching) | [24,25] |
| Secondary alteration products | Brucite (Mg(OH)2), magnesite (MgCO3) | Locally up to 20–30% MgO | Readily soluble and serve as raw materials for magnesium compound recovery | [24,25] |
| Sulfides | Associated PGMs | Distribution Features | Ref. |
|---|---|---|---|
| Pyrrhotite (Fe1–ₓS), pentlandite [(Fe,Ni)9S8], pyrite (FeS2), chalcopyrite (CuFeS2) | Laurite (RuS2), cooperite (PtS), braggite [(Pt,Pd)S] | PGMs often enclosed in silicate matrix; strong geochemical association with sulfide fractionation | [27,28] |
| Pentlandite, chalcopyrite, pyrrhotite, bornite (UG2 layer, Bushveld) | Associations with tellurides, bismuthides, antimonides, and arsenides | PGM enrichment in the upper and lower parts of the chromitite layer; highest concentrations at the base | [29] |
| Method | Working Principle | Application | Advantages | Disadvantages | Ref |
|---|---|---|---|---|---|
| Gravity separation | Separation by density | Main method, especially for coarse and medium fractions | Simplicity, low energy consumption | Limited efficiency for fine-grained ores | [36] |
| Magnetic separation | Separation by magnetic properties | Removal of magnetite and recovery of weakly magnetic chromite | Good selectivity | Requires fine grinding | [37] |
| Flotation | Separation by surface wettability | Fine-grained ores and tailings | Enables additional chromite recovery | Low efficiency, high reagent cost | [38] |
| Combined schemes | Combination of methods | Low-grade and complex ores | Higher recovery and improved concentrate quality | More complex technology | [39] |
| Parameter | Pyrometallurgy (Smelting, Reduction, Ferrochrome) | Hydrometallurgy (Acid/alkaline Leaching) |
|---|---|---|
| Main product | Ferrochrome (Cr–Fe alloy), chromium slags | Cr compounds (Cr2O3, CrO3), Mg salts (MgSO4, MgCl2) |
| Cr recovery | High (>85%), mainly as alloy | Medium (60–75%), depends on reagents and conditions |
| Mg recovery | Almost absent, Mg enters slag | Partial (40–60% with HCl/H2SO4; low in alkaline media) |
| PGM recovery | Absent | Nearly absent, remains in solid residue |
| Energy consumption | Very high (T > 1600 °C, high electricity demand) | Moderate, requires heating and pressure (autoclaves) |
| Environmental aspects | Large CO2 emissions, slag generation | Generation of toxic sludges and acidic effluents |
| Limitations | Focus only on Cr, associated elements are lost | Harsh conditions, low comprehensiveness of recovery |
| Advantages | Mature, well-established technologies, large-scale production | Potential for Mg recovery, flexibility in flowsheets |
| Feed Material | Bioleaching Agent | pH | Medium/Additives | T (°C) | Duration (h) | Key Outcome | Ref. |
|---|---|---|---|---|---|---|---|
| Chromite ore processing residue (COPR (chromite ore processing residue) A, B) | Pannonibacter phragmitetus BB | 6.8–7.0 | Minimal salts + organic carbon | 25 | 240 | Cr(VI) in leachate < 0.05 mg/L | [78] |
| Chromite-polluted soil | Lysinibacillus cavernae CR-2 | 7.0 | Nutrient broth with 1% glucose | 30 | 168 | Cr(VI) ↓ 97%; Cr(III) stabilized | [79] |
| Serpentinite tailings (Mg source) | Aspergillus niger | 3.0 | Organic acid biosynthesis (citric acid) | 28 | 96 | Mg recovery 60–75%; silica residue | [76] |
| UG-2 chromite concentrate | Thermoacidophilic archaea | 1.8–2.2 | Acidic medium, Fe2+ regeneration | 55 | 72 | Improved Pt, Pd extraction efficiency | [73] |
| Mixed sulfide–chromite tailings | Mixed acidophilic culture | 1.5 | FeSO4 as energy source | 35 | 120 | Liberation of PGM sulfides; Fe oxidized | [74] |
| Magnesia–chromite residue | Bacillus subtilis sp. | 6.5 | Biosorption in aqueous solution | 25 | 24 | Mg2+ and Cr(VI) uptake up to 85% | [77] |
| Processing Method | Main Products | Typical Recovery (%) | Energy Demand (MJ/kg Cr) | Operating Cost (USD/t ore) | Environmental Impact (CO2, kg/t) | Advantages | Limitations | Ref. |
|---|---|---|---|---|---|---|---|---|
| Pyrometallurgical (submerged-arc FeCr smelting) | Ferrochrome alloy; slags | 85–90 | 18–22 | 480–520 | 1600–1800 | Mature, high throughput | Very high CO2; poor Mg/PGM recovery | [41,42,43,64] |
| Hydrometallurgical (acid/alkaline leaching, autoclave) | Cr compounds (Cr2O3, chromates), Mg salts | 60–96 (process-dependent) | 10–12 | 350–400 | 700–900 | Selective extraction; recovers Mg salts | Reagent consumption; effluent treatment | [47,48,49,50,51,52,55,57] |
| Plasma-arc smelting (DC plasma) | Fe–Cr alloy; Mg-silicate slag | 92–98 | 14–17 | 420–460 | 1000–1200 | Faster kinetics; ~30–35% CO2 reduction vs. SA arc | High CAPEX; needs reductant control | [62,63,64] |
| Sulfation → chlorination/carbochlorination | Soluble Cr and PGM chlorides | 90–96 (PGMs) | 8–10 | 300–350 | 800–900 | High selectivity for PGMs | Corrosive gases, Cl2/CO emissions; gas handling | [65,67,68,69,70,71,72] |
| Biotechnological (bioleaching, bioreduction, biosorption) | Cr(III) stabilization; Mg2+ mobilization; PGM liberation | 70–90 (Cr/Mg variable; PGMs lower) | 2–5 | 200–250 | <200 | Low energy; eco-friendly; aligns with ESG | Slow kinetics; sensitive to pH/T; scale-up challenges | [73,74,76,77,78,79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulvaliyev, R.; Abikak, Y.; Akhmadiyeva, N.; Gladyshev, S.; Manapova, A.; Kasymzhanova, A. Towards Sustainable Processing of Chromite Resources: A Review of Methods for Magnesium and Platinum-Group Metal Extraction. Inorganics 2025, 13, 353. https://doi.org/10.3390/inorganics13110353
Abdulvaliyev R, Abikak Y, Akhmadiyeva N, Gladyshev S, Manapova A, Kasymzhanova A. Towards Sustainable Processing of Chromite Resources: A Review of Methods for Magnesium and Platinum-Group Metal Extraction. Inorganics. 2025; 13(11):353. https://doi.org/10.3390/inorganics13110353
Chicago/Turabian StyleAbdulvaliyev, Rinat, Yerkezhan Abikak, Nazym Akhmadiyeva, Sergey Gladyshev, Alfiyam Manapova, and Asiya Kasymzhanova. 2025. "Towards Sustainable Processing of Chromite Resources: A Review of Methods for Magnesium and Platinum-Group Metal Extraction" Inorganics 13, no. 11: 353. https://doi.org/10.3390/inorganics13110353
APA StyleAbdulvaliyev, R., Abikak, Y., Akhmadiyeva, N., Gladyshev, S., Manapova, A., & Kasymzhanova, A. (2025). Towards Sustainable Processing of Chromite Resources: A Review of Methods for Magnesium and Platinum-Group Metal Extraction. Inorganics, 13(11), 353. https://doi.org/10.3390/inorganics13110353

