Co-Polymerized P(AN-co-IA)-Derived Electrospun Nanofibers with Improved Graphitization via Dual-Metallocene Integration at Low Temperature
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of P(AN-co-IA) Co-Polymer via Radical Polymerization
3.2. Electrospinning and Graphitization of Metallocene-Integrated P(AN-co-IA) Nanofiber Mats
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kothandam, G.; Singh, G.; Guan, X.; Lee, J.M.; Ramadass, K.; Joseph, S.; Benzigar, M.; Karakoti, A.; Yi, J.; Kumar, P.; et al. Recent Advances in Carbon-Based Electrodes for Energy Storage and Conversion. Adv. Sci. 2023, 10, 2301045. [Google Scholar] [CrossRef]
- Su, D.S.; Centi, G. A perspective on carbon materials for future energy application. J. Energy Chem. 2013, 22, 151–173. [Google Scholar] [CrossRef]
- Titirici, M.-M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; Del Monte, F.; Clark, J.H.; MacLachlan, M.J. Sustainable carbon materials. Chem. Soc. Rev. 2015, 44, 250–290. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Tan, X.; Liu, Y.; Liu, S.; Li, M.; Gu, Y.; Zhang, P.; Ye, S.; Yang, Z.; Yang, Y. Biomass-derived porous graphitic carbon materials for energy and environmental applications. J. Mater. Chem. A 2020, 8, 5773–5811. [Google Scholar] [CrossRef]
- Lan, G.; Yang, J.; Ye, R.-P.; Boyjoo, Y.; Liang, J.; Liu, X.; Li, Y.; Liu, J.; Qian, K. Sustainable Carbon Materials toward Emerging Applications. Small Methods 2021, 5, 2001250. [Google Scholar] [CrossRef]
- Duraisamy, N.; SK, K.; Dhandapani, E.; Kandiah, K. A Review on Biomass-Derived Activated Carbon for Next-Generation Supercapacitors: Cutting-Edge Advances and Future Prospects. Energy Fuels 2025, 39, 2306–2347. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Recent Advancement of Nanostructured Carbon for Energy Applications. Chem. Rev. 2015, 115, 5159–5223. [Google Scholar] [CrossRef] [PubMed]
- Mokoloko, L.L.; Forbes, R.P.; Coville, N.J. The Transformation of 0-D Carbon Dots into 1-, 2- and 3-D Carbon Allotropes: A Minireview. Nanomaterials 2022, 12, 2515. [Google Scholar] [CrossRef]
- Yi, W.; Khalid, A.; Arshad, N.; Asghar, M.S.; Irshad, M.S.; Wang, X.; Yi, Y.; Si, J.; Hou, X.; Li, H.R. Recent Progress and Perspective of an Evolving Carbon Family from 0D to 3D: Synthesis, Biomedical Applications, and Potential Challenges. ACS Appl. Bio Mater. 2023, 6, 2043–2088. [Google Scholar] [CrossRef]
- Pathak, I.; Acharya, D.; Chhetri, K.; Lohani, P.C.; Subedi, S.; Muthurasu, A.; Kim, T.; Ko, T.H.; Dahal, B.; Kim, H.Y. Ti3C2Tx MXene embedded metal–organic framework-based porous electrospun carbon nanofibers as a freestanding electrode for supercapacitors. J. Mater. Chem. A 2023, 11, 5001–5014. [Google Scholar] [CrossRef]
- Nie, G.; Zhao, X.; Luan, Y.; Jiang, J.; Kou, Z.; Wang, J. Key issues facing electrospun carbon nanofibers in energy applications: On-going approaches and challenges. Nanoscale 2020, 12, 13225–13248. [Google Scholar] [CrossRef]
- Pathak, I.; Dahal, B.; Acharya, D.; Chhetri, K.; Muthurasu, A.; Rosyara, Y.R.; Kim, T.; Saidin, S.; Ko, T.H.; Kim, H.Y. Integrating V-doped CoP on Ti3C2Tx MXene-incorporated hollow carbon nanofibers as a freestanding positrode and MOF-derived carbon nanotube negatrode for flexible supercapacitors. Chem. Eng. J. 2023, 475, 146351. [Google Scholar] [CrossRef]
- Vtyurina, E.S.; Ponomarev, I.I.; Naumkin, A.V.; Bukalov, S.S.; Aysin, R.R.; Ponomarev, I.I.; Zhigalina, O.M.; Khmelenin, D.N.; Skupov, K.M. Influence of the Polymer Precursor Structure on the Porosity of Carbon Nanofibers: Application as Electrode in High-Temperature Proton Exchange Membrane Fuel Cells. ACS Appl. Nano Mater. 2024, 7, 4313–4323. [Google Scholar] [CrossRef]
- Maran, B.A.V.; Jeyachandran, S.; Kimura, M. A Review on the Electrospinning of Polymer Nanofibers and Its Biomedical Applications. J. Compos. Sci. 2024, 8, 32. [Google Scholar] [CrossRef]
- Zhang, L.; Aboagye, A.; Kelkar, A.; Lai, C.; Fong, H. A review: Carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 2014, 49, 463–480. [Google Scholar] [CrossRef]
- Bisheh, H.; Abdin, Y. Carbon Fibers: From PAN to Asphaltene Precursors; A State-of-Art Review. C 2023, 9, 19. [Google Scholar] [CrossRef]
- Kim, T.; Kim, B.-S.; Ko, T.H.; Kim, H.Y. In-Situ Polymerization for Catalytic Graphitization of Boronated PAN Using Aluminum and Zirconium Containing Co-Catalysts. Inorganics 2025, 13, 16. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, B.; Deng, Y.; Ma, J.; Cao, C.; Wang, J.; Ao, Y.; Zhang, H. The suitable itaconic acid content in polyacrylonitrile copolymers used for PAN-based carbon fibers. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Kim, T.; Kim, B.-S.; Ko, T.H.; Kim, H.Y. Effect of Boron and Iron at Various Concentrations on the Catalytic Graphitization of the Polyacrylonitrile Derived from the Polymerization of Acrylonitrile. Inorganics 2025, 13, 52. [Google Scholar] [CrossRef]
- Nguyen-Thai, N.U.; Hong, S.C. Structural Evolution of Poly(acrylonitrile-co-itaconic acid) during Thermal Oxidative Stabilization for Carbon Materials. Macromolecules 2013, 46, 5882–5889. [Google Scholar] [CrossRef]
- Ghorpade, R.V.; Lee, S.; Hong, S.C. Effect of different itaconic acid contents of poly(acrylonitrile-co-itaconic acid)s on their carbonization behaviors at elevated temperatures. Polym. Degrad. Stab. 2020, 181, 109373. [Google Scholar] [CrossRef]
- Hao, J.; Wei, H.; Lu, C.; Liu, Y. New aspects on the cyclization mechanisms of Poly(acrylonitrile-co-itaconic acid). Eur. Polym. J. 2019, 121, 109313. [Google Scholar] [CrossRef]
- Sharma, S.; Basu, S.; Shetti, N.P.; Mondal, K.; Sharma, A.; Aminabhavi, T.M. Versatile Graphitized Carbon Nanofibers in Energy Applications. ACS Sustain. Chem. Eng. 2022, 10, 1334–1360. [Google Scholar] [CrossRef]
- Mennani, M.; Benhamou, A.A.; Mekkaoui, A.A.; El Bachraoui, F.; El Achaby, M.; Moubarik, A.; Kassab, Z. Probing the evolution in catalytic graphitization of biomass-based materials for enduring energetic applications. J. Mater. Chem. A 2024, 12, 6797–6825. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, J.; Ren, X.; Sun, N.; Liu, J.; Zhou, Y.; Gao, Y.; Cai, J.; Cai, X.; Tan, H. Enhancement of the low-temperature catalytic graphitization of polyacrylonitrile by incorporating Cu nanostructures as plasmonic photocatalyst. J. Mater. Sci. 2022, 57, 1703–1713. [Google Scholar] [CrossRef]
- Gao, X.; Liu, L.; Guo, Q.; Shi, J.; Zhai, G. The effect of zirconium addition on the microstructure and properties of chopped carbon fiber/carbon composites. Compos. Sci. Technol. 2007, 67, 525–529. [Google Scholar] [CrossRef]
- Baskakov, A.O.; Lyubutin, I.S.; Starchikov, S.S.; Davydov, V.A.; Kulikova, L.F.; Egorova, T.B.; Agafonov, V.N. Mechanism of Transformation of Ferrocene into Carbon-Encapsulated Iron Carbide Nanoparticles at High Pressures and Temperatures. Inorg. Chem. 2018, 57, 14895–14903. [Google Scholar] [CrossRef]
- Bagramov, R.H.; Filonenko, V.P.; Zibrov, I.P.; Skryleva, E.A.; Kulnitskiy, B.A.; Blank, V.D.; Khabashesku, V.N. Magnetic Nanoparticles with Fe-N and Fe-C Cores and Carbon Shells Synthesized at High Pressures. Materials 2023, 16, 7063. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, H.; Wen, S.; Chen, Z.; Du, Y.; Shi, L.; Li, B. Metallocene-based covalent metal-organic porous polymers and their derivatives. Mater. Des. 2023, 225, 111547. [Google Scholar] [CrossRef]
- Destyorini, F.; Irmawati, Y.; Hardiansyah, A.; Widodo, H.; Yahya, I.N.D.; Indayaningsih, N.; Yudianti, R.; Hsu, Y.-I.; Uyama, H. Formation of nanostructured graphitic carbon from coconut waste via low-temperature catalytic graphitisation. Eng. Sci. Technol. Int. J. 2021, 24, 514–523. [Google Scholar] [CrossRef]
- Zhu, H.-L.; Bai, Y.-J.; Cui, H.-Z.; Liu, L. Facile synthesis of carbon nanotubes via low temperature pyrolysis of ferrocene. J. Cryst. Growth 2014, 404, 44–47. [Google Scholar] [CrossRef]
- Kim, S.A.; Park, K.M.; Jung, K.-H. Preparation of iron/carbon composite by grafting ferrocene to carbon nanofibers for supercapacitor electrodes. Carbon Lett. 2025, 35, 1407–1417. [Google Scholar] [CrossRef]
- Gumrukcu, S.; Soprunyuk, V.; Sarac, B.; Yüce, E.; Eckert, J.; Sarac, A.S. Electrospun polyacrylonitrile/2-(acryloyloxy) ethyl ferrocenecarboxylate polymer blend nanofibers. Mol. Syst. Des. Eng. 2021, 6, 476–492. [Google Scholar] [CrossRef]
- Hunter, R.D.; Ramírez-Rico, J.; Schnepp, Z. Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons. J. Mater. Chem. A 2022, 10, 4489–4516. [Google Scholar] [CrossRef]
- Liu, J.-J.; Ge, H.; Wang, C.-G. Modification of polyacrylonitrile precursors for carbon fiber via copolymerization of acrylonitrile with ammonium itaconate. J. Appl. Polym. Sci. 2006, 102, 2175–2179. [Google Scholar] [CrossRef]
- Ouyang, Q.; Cheng, L.; Wang, H.; Li, K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym. Degrad. Stab. 2008, 93, 1415–1421. [Google Scholar] [CrossRef]
- Ma, Y.; Jiang, S.; Liang, S.; Yang, W. New Chemistries and Technologies Derived from a Common Reaction of α-Methylstyrene at 61 °C. Macromol. React. Eng. 2015, 9, 490–502. [Google Scholar] [CrossRef]
- Jiao, Y.; Yan, H.; Meng, Q.; Jia, S.; Liu, S.; Zhang, H.; Fu, Z. Polymerization of acrylonitrile in dimethyl carbonate: A kinetic and mechanistic study. Polymer 2025, 316, 127878. [Google Scholar] [CrossRef]
- Chen, Q.; He, B.; Chen, Y.; Zhu, H.; Malik, H.; Wang, Y.; He, J.; Ma, B.; Wang, X.; Zhang, H.; et al. Terpolymers of acrylonitrile, methyl acrylate, and 2-acrylamido-2-methylpropane sulfonic acid for carbon fiber precursor: Effect of comonomers on the thermal stabilization of polyacrylonitrile copolymers. J. Appl. Polym. Sci. 2023, 140, e54552. [Google Scholar] [CrossRef]
- Krishnan, G.S.; Burkanudeen, A.; Murali, N.; Phadnis, H. Studies on molecular weight distribution of carbon fiber polymer precursors synthesized using mixed solvents. Chin. J. Polym. Sci. 2012, 30, 664–673. [Google Scholar] [CrossRef]
- Jamil, S.N.; Daik, R.; Ahmad, I. Synthesis and Thermal Properties of Acrylonitrile/Butyl Acrylate/Fumaronitrile and Acrylonitrile/Ethyl Hexyl Acrylate/Fumaronitrile Terpolymers as a Potential Precursor for Carbon Fiber. Materials 2014, 7, 6207–6223. [Google Scholar] [CrossRef]
- Xu, W.; Xin, B.; Yang, X. Carbonization of electrospun polyacrylonitrile (PAN)/cellulose nanofibril (CNF) hybrid membranes and its mechanism. Cellulose 2020, 27, 3789–3804. [Google Scholar] [CrossRef]
- Zhang, H.; Quan, L.; Gao, A.; Tong, Y.; Shi, F.; Xu, L. Thermal Analysis and Crystal Structure of Poly(Acrylonitrile-Co-Itaconic Acid) Copolymers Synthesized in Water. Polymers 2020, 12, 221. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, J.; Ma, H.; Zhu, C.; Zhang, D.; Ding, Y.; Gao, C.; Wu, Y. A type of itaconic acid modified polyacrylate with good mechanical performance and biocompatibility. React. Funct. Polym. 2019, 143, 104320. [Google Scholar] [CrossRef]
- Loginova, E.V.; Mikheev, I.V.; Volkov, D.S.; Proskurnin, M.A. Quantification of copolymer composition (methyl acrylate and itaconic acid) in polyacrylonitrile carbon-fiber precursors by FTIR-spectroscopy. Anal. Methods 2016, 8, 371–380. [Google Scholar] [CrossRef]
- Sarac, B.; Soprunyuk, V.; Yüce, E.; Gümrükçü, S.; Schranz, W.; Sarac, A.S. Impact of thermal treatment and magnetic field on the dynamic mechanical behavior of polyacrylonitrile nanofibers with embedded magnetic ferrite nanoparticles. Mater. Adv. 2025, 6, 5475–5485. [Google Scholar] [CrossRef]
- Hou, H.; Ge, J.J.; Zeng, J.; Li, Q.; Reneker, D.H.; Greiner, A.; Cheng, S.Z.D. Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-Aligned Multiwall Carbon Nanotubes. Chem. Mater. 2005, 17, 967–973. [Google Scholar] [CrossRef]
- Thambiliyagodage, C.; Nakandala, S.; Siriwardana, B.; Lansakara, B. One pot synthesis of α-Fe2O3/turbostratic carbon composites and their photocatalytic activity under sunlight. Carbon Trends 2021, 5, 100130. [Google Scholar] [CrossRef]
- Jawhari, T.; Roid, A.; Casado, J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 1995, 33, 1561–1565. [Google Scholar] [CrossRef]
- Ayaganov, Z.; Pavlenko, V.; Haque, S.F.B.; Tanybayeva, A.; Ferraris, J.; Zakhidov, A.; Mansurov, Z.; Bakenov, Z.; Ng, A. A comprehensive study on effect of carbon nanomaterials as conductive additives in EDLCs. J. Energy Storage 2024, 78, 110035. [Google Scholar] [CrossRef]
- Nie, W.; Wang, B.; Wu, W.; Li, S.; Huang, F.; Ma, W.; Zhang, H. In Situ Growth Medium Entropy Alloy Nanoparticles on the Ordered Structure Carbon Nanofiber Aerogel for Enhanced Microwave Absorption and Infrared Stealth Properties. Small 2025, 21, 2503955. [Google Scholar] [CrossRef]
- Samoilov, V.M.; Verbets, D.B.; Bubnenkov, I.A.; Steparyova, N.N.; Nikolaeva, A.V.; Danilov, E.A.; Ponomareva, D.V.; Timoshchuk, E.I. Influence of Graphitization Conditions at 3000 °C on Structural and Mechanical Properties of High-Modulus Polyacrylonitrile-Based Carbon Fibers. Inorg. Mater. Appl. Res. 2018, 9, 890–899. [Google Scholar] [CrossRef]
- Kim, C.; Park, S.-H.; Cho, J.-I.; Lee, D.-Y.; Park, T.-J.; Lee, W.-J.; Yang, K.-S. Raman spectroscopic evaluation of polyacrylonitrile-based carbon nanofibers prepared by electrospinning. J. Raman Spectrosc. 2004, 35, 928–933. [Google Scholar] [CrossRef]
- Cintra, I.L.R.; Baldan, M.R.; Anjos, E.G.R.; Silva, T.F.; Guerrini, L.M.; Rezende, M.C.; Botelho, E.C. Processing and characterization of carbon nanofibers obtained from PAN/lignin blends processed by electrospinning. Polym. Eng. Sci. 2023, 63, 1246–1262. [Google Scholar] [CrossRef]
- Ali, A.B.; Slawig, D.; Schlosser, A.; Koch, J.; Bigall, N.C.; Renz, F.; Tegenkamp, C.; Sindelar, R. Polyacrylonitrile (PAN) based electrospun carbon nanofibers (ECNFs): Probing the synergistic effects of creep assisted stabilization and CNTs addition on graphitization and low dimensional electrical transport. Carbon 2021, 172, 283–295. [Google Scholar] [CrossRef]
- Shahid, F.; Marshall, M.; Chaffee, A.L. Iron catalysed graphitization of Victorian brown coal monoliths. J. Anal. Appl. Pyrolysis 2025, 190, 107117. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873. [Google Scholar] [CrossRef]
- Wei, G.; Su, W.; Wei, Z.; Jing, M.; Fan, X.; Liu, J.; Yan, C. Effect of the graphitization degree for electrospun carbon nanofibers on their electrochemical activity towards VO2+/VO2+ redox couple. Electrochim. Acta 2016, 199, 147–153. [Google Scholar] [CrossRef]
- Primak, W. C-Axis Electrical Conductivity of Graphite. Phys. Rev. 1956, 103, 544–546. [Google Scholar] [CrossRef]
- Golubev, Y.A.; Antonets, I.V. Electrophysical Properties and Structure of Natural Disordered sp2 Carbon. Nanomaterials 2022, 12, 3797. [Google Scholar] [CrossRef]
- Stamatin, I.; Morozan, A.; Dumitru, A.; Ciupina, V.; Prodan, G.; Niewolski, J.; Figiel, H. The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins. Phys. E Low Dimens. Syst. Nanostruct. 2007, 37, 44–48. [Google Scholar] [CrossRef]
- Bitencourt, C.S.; Luz, A.P.; Pagliosa, C.; Pandolfelli, V.C. Role of catalytic agents and processing parameters in the graphitization process of a carbon-based refractory binder. Ceram. Int. 2015, 41, 13320–13330. [Google Scholar] [CrossRef]
- Song, H.; Chen, X.; Chen, X.; Zhang, S.; Li, H. Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue. Carbon 2003, 41, 3037–3046. [Google Scholar] [CrossRef]
- Moskaleva, L.V.; Lin, M.C. Unimolecular isomerization/decomposition of cyclopentadienyl and related bimolecular reverse process: Ab initio MO/statistical theory study. J. Comput. Chem. 2000, 21, 415–425. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, L.; Cui, C.; Liu, Q.; Wang, H. Preparation and characterization of zirconium carbide nano powder by hydrothermal and carbothermal reduction methods. Ceram. Int. 2024, 50, 30151–30160. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Yuan, X.; Li, X.; Wu, Y.; Wang, X. Effect of ZrC Formation on Graphitization of Carbon Phase in Polymer Derived ZrC–C Ceramics. Materials 2019, 12, 4153. [Google Scholar] [CrossRef]
- Shen, Y. Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. J. Mater. Chem. A 2015, 3, 13114–13188. [Google Scholar] [CrossRef]
- DeRosa, T.F. Cyclopentadiene. In Advances in Synthetic Organic Chemistry and Methods Reported in US Patents; DeRosa, T.F., Ed.; Elsevier: Oxford, UK, 2006; pp. 230–232. [Google Scholar]
- Jaiswal, A.; Kumar, R.; Prakash, R. Iron/Iron Carbide (Fe/Fe3C) Encapsulated in S, N Codoped Graphitic Carbon as a Robust HER Electrocatalyst. Energy Fuels 2021, 35, 16046–16053. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, M.F.; Zhang, Y.X.; Li, D.Y.; Zhang, C.S.; Zhu, Y.D.; Wang, Y.X. Catalytic growth of diamond-like carbon on Fe3C-containing carburized layer through a single-step plasma-assisted carburizing process. Carbon 2017, 122, 1–8. [Google Scholar] [CrossRef]
- Lee, H.; Lee, W.-J.; Park, Y.-K.; Ki, S.J.; Kim, B.-J.; Jung, S.-C. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications. Nanomaterials 2018, 8, 190. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, M.; Zhang, S.; Zhang, Y.; Chen, H.; Wang, X.J.D. One-step plasma-assisted method for functionally graded Fe3O4/DLC coated carburized layer on steel. Diam. Relat. Mater. 2016, 70, 18–25. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, B. Investigation of disorder in carbon encapsulated core-shell Fe/Fe3C nanoparticles synthesized by one-step pyrolysis. Diam. Relat. Mater. 2018, 90, 62–71. [Google Scholar] [CrossRef]
- Fina, F.; Callear, S.K.; Carins, G.M.; Irvine, J.T.S. Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction. Chem. Mater. 2015, 27, 2612–2618. [Google Scholar] [CrossRef]
- Cometto, C.; Ugolotti, A.; Grazietti, E.; Moretto, A.; Bottaro, G.; Armelao, L.; Di Valentin, C.; Calvillo, L.; Granozzi, G. Copper single-atoms embedded in 2D graphitic carbon nitride for the CO2 reduction. Npj 2D Mater. Appl. 2021, 5, 63. [Google Scholar] [CrossRef]
- Zou, G.; Zhang, D.; Dong, C.; Li, H.; Xiong, K.; Fei, L.; Qian, Y. Carbon nanofibers: Synthesis, characterization, and electrochemical properties. Carbon 2006, 44, 828–832. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Ko, T.H.; Kim, B.-S.; Chung, Y.-S.; Kim, H.Y. Co-Polymerized P(AN-co-IA)-Derived Electrospun Nanofibers with Improved Graphitization via Dual-Metallocene Integration at Low Temperature. Inorganics 2025, 13, 318. https://doi.org/10.3390/inorganics13100318
Kim T, Ko TH, Kim B-S, Chung Y-S, Kim HY. Co-Polymerized P(AN-co-IA)-Derived Electrospun Nanofibers with Improved Graphitization via Dual-Metallocene Integration at Low Temperature. Inorganics. 2025; 13(10):318. https://doi.org/10.3390/inorganics13100318
Chicago/Turabian StyleKim, Taewoo, Tae Hoon Ko, Byoung-Suhk Kim, Yong-Sik Chung, and Hak Yong Kim. 2025. "Co-Polymerized P(AN-co-IA)-Derived Electrospun Nanofibers with Improved Graphitization via Dual-Metallocene Integration at Low Temperature" Inorganics 13, no. 10: 318. https://doi.org/10.3390/inorganics13100318
APA StyleKim, T., Ko, T. H., Kim, B.-S., Chung, Y.-S., & Kim, H. Y. (2025). Co-Polymerized P(AN-co-IA)-Derived Electrospun Nanofibers with Improved Graphitization via Dual-Metallocene Integration at Low Temperature. Inorganics, 13(10), 318. https://doi.org/10.3390/inorganics13100318