Thionitrosyl Complexes of Rhenium and Technetium with PPh3 and Chelating Ligands—Synthesis and Reactivity
Abstract
1. Introduction
2. Results and Discussion
2.1. Triphenylphosphine Complexes
2.2. Complexes with Chelating Ligands
3. Materials and Methods
3.1. Syntheses
3.2. Spectroscopic and Analytical Methods
3.3. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Technetium-99m Radiopharmaceuticals: Manufacture of Kits; IAEA Technical Reports Series No. 466; International Atomic Energy Agency: Vienna, Austria, 2008; pp. 126–129.
- Abram, U.; Alberto, R. Technetium and rhenium—coordination chemistry and nuclear medical applications. J. Braz. Chem. Soc. 2006, 17, 1486–1500. [Google Scholar] [CrossRef]
- Bartholomä, M.D.; Louie, A.S.; Valliant, J.F.; Zubieta, J. Technetium and gallium derived radiopharmaceuticals: Comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem. Rev. 2010, 110, 2903–2920. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Dixit, M. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. Dalton Trans. 2011, 40, 6112–6128. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chakraborty, S. 99mTc-centered one-pot synthesis for preparation of 99mTc radiotracers. Dalton Trans. 2011, 40, 6077–6086. [Google Scholar] [CrossRef] [PubMed]
- Dilworth, J.R.; Pascu, S.I. The Radiopharmaceutical Chemistry of Technetium and Rhenium. In The Chemistry of Molecular Imaging; Long, N., Wong, W.-T., Eds.; John Wiley & Sons: Chichester, UK, 2015; pp. 163–174. [Google Scholar]
- Kuntic, V.; Brboric, J.; Vujic, Z.; Uskokovic-Markovic, S. Radioisotopes Used as Radiotracers in vitro and in vivo Diagnostics: A Review. Asian J. Chem. 2016, 28, 235–411. [Google Scholar] [CrossRef]
- Papagiannopoulou, D. Technetium-99m radiochemistry for pharmaceutical applications. J. Labelled Compd. Radiopharm. 2017, 60, 502–520. [Google Scholar] [CrossRef] [PubMed]
- Duatti, A. Review on 99mTc radiopharmaceuticals with emphasis on new advancements. Nucl. Med. Biol. 2021, 92, 202–216. [Google Scholar] [CrossRef] [PubMed]
- Alberto, R.; Nadeem, Q. 99mTechnetium-Based Imaging Agents and Developments in 99Tc Chemistry. In Metal Ions in Bio-Imaging Techniques; Sigel, A., Freisinger, E., Sigel, K.O., Eds.; De Gruyter: Berlin/Munich, Germany; Boston, MA, USA, 2021; pp. 196–238. [Google Scholar]
- Alberto, R. Role of Pure Technetium Chemistry: Are There Still Links to Applications in Imaging? Inorg. Chem. 2023, 62, 20539–20548. [Google Scholar] [CrossRef] [PubMed]
- World Nuclear Association. Radioisotopes in Medicine. Available online: https://world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine (accessed on 1 July 2024).
- Dash, A.; Knapp, F.F., Jr.; Pillai, M.R.A. 99Mo/99mTc separation: An assessment of technology options. Nucl. Med. Biol. 2013, 40, 167–176. [Google Scholar] [CrossRef]
- Lepareur, N.; Lacœuille, F.; Bouvry, C.; Hindré, F.; Garcion, E.; Chérel, M.; Noiret, N.; Garin, E.; Knapp, F.F. Rhenium-188 Labeled Radiopharmaceuticals: Current Clinical Applications in Oncology and Promising Perspectives. Front. Med. 2019, 6, 132. [Google Scholar] [CrossRef]
- Cutler, C.S.; Hennkens, H.M.; Sisay, N.; Huclier-Markai, S.; Jurisson, S. Radiometals for Combined Imaging and Therapy. Chem. Rev. 2013, 113, 858–883. [Google Scholar] [CrossRef]
- Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 2014, 43, 260–290. [Google Scholar] [CrossRef]
- Kronauge, J.F.K.; Mindiola, D.J. The value of Stable Metal-Carbon Bonds in Nuclear Medicine and the Cardiolite Story. Organometallics 2016, 35, 3432–3435. [Google Scholar] [CrossRef]
- Morais, G.R.; Paulo, A.; Santos, I. Organometallic Complexes for SPECT Imaging and/or Radionuclide Therapy. Organometallics 2012, 31, 5693–5714. [Google Scholar] [CrossRef]
- Alberto, R. From oxo to carbonyl and arene complexes; A journey through technetium chemistry. J. Organomet. Chem. 2018, 869, 264–269. [Google Scholar] [CrossRef]
- Benz, M.; Braband, H.; Schmutz, P.; Halter, J.; Alberto, R. From TcVII to TcI; facile syntheses of bis-arene complexes [99(m)Tc(arene)2]+ from pertechnetate. Chem. Sci. 2015, 6, 165–169. [Google Scholar] [CrossRef]
- Meola, G.; Braband, H.; Jordi, S.; Fox, T.; Blacque, O.; Spingler, B.; Alberto, R. Structure and reactivities of rhenium and technetium bis-arene sandwich complexes [M(η6-arene)2]+. Dalton Trans. 2017, 46, 14631–14637. [Google Scholar] [CrossRef]
- Nadeem, Q.; Meola, G.; Braband, H.; Bollinger, R.; Blancque, O.; Hernandez-Valdes, D.; Alberto, R. To Sandwich Technetium: Highly Functionalized Bis-Arene Complexes [99mTc(η6-arene)2]+ Directly from Water and [TcO4−]. Angew. Chem. Int. Ed. Engl. 2020, 59, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, Q.; Battistin, F.; Blancque, O.; Alberto, R. Naphtalene Exchange in [Re(η6-napht)2]+ with Pharmaceutical Leads to Highly Functionalized Sandwich Complexes [M(η6-pharm)2]+ (M = Re/99mTc). Chemistry 2022, 28, e202103566. [Google Scholar] [CrossRef]
- Boschi, A.; Uccelli, L.; Marvelli, L.; Cittanti, C.; Giganti, M.; Martini, P. Technetium-99m Radiopharmaceuticals for Ideal Myocardial Perfusion Imaging: Lost and Found Opportunities. Molecules 2022, 27, 1188. [Google Scholar] [CrossRef]
- Pasqualini, R.; Duatti, A.; Bellande, E.; Comazzi, V.; Brucato, V.; Hoffschir, D.; Fagret, D.; Comet, M. Bis (Dithiocarbamato) Nitrido Technetium-99m Radiopharmaceuticals: A Class of Neutral Myocardial Imaging Agents. J. Nucl. Med. 1994, 35, 334–341. [Google Scholar]
- Boschi, A.; Uccelli, L.; Bolzati, C.; Duatti, A.; Sabba, N.; Moretti, E.; di Domenico, G.; Zavattini, G.; Refosco, F.; Giganti, M. Synthesis and Biologic Evaluation of Monocationic Asymmetric 99mTc-Nitride Heterocomplexes Showing High Heart Uptake and Improved Imaging Properties. J. Nucl. Med. 2003, 44, 806–814. [Google Scholar] [PubMed]
- Salvarese, N.; Carta, D.; Marzano, C.; Gerardi, G.; Melendez-Alafort, L.; Bolzati, C. [99mTc][Tc(N)(DASD)(PNPn)]+ (DASD = 1,4-Dioxa-8-Azaspiro[4,5]Decandithiocarbamate, PNP n = Bisphosphinoamine) for Myocardial Imaging: Synthesis, Pharmacological and Pharmacokinetic Studies. J. Med. Chem. 2018, 61, 11114–11126. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, L.K.; Dose, A.; Biagini, S.C.G.; Blower, P.J. Hydrazinonicotinic acid (HYNIC)—Coordination chemistry and applications in radiopharmaceutical chemistry. Inorg. Chim. Acta 2010, 363, 1059–1069. [Google Scholar] [CrossRef]
- Abrams, M.J.; Juweid, M.; tenKate, C.I.; Schwartz, D.A.; Hauser, M.M.; Gaul, F.E.; Fuccello, A.J.; Rubin, R.H.; Strauss, H.W.; Fischman, A.J. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazine nicotinamide derivative for imaging focal sites of infection in rats. J. Nucl. Med. 1990, 31, 2022–2028. [Google Scholar] [PubMed]
- Jiang, Y.; Tian, Y.; Feng, B.; Zhao, T.; Yu, X.; Zhao, Q. A novel molecular imaging probe [99mTc]Tc-HYNIC-FAPI targeting cancer-associated fibroblasts. Sci. Rep. 2023, 13, 3700. [Google Scholar] [CrossRef] [PubMed]
- Cheah, C.T.; Newman, J.L.; Nowotnik, D.P.; Thornback, J.R. Synthesis and biological studies of the [99mTc]tetrachloronitrosyltechnetium(II) anion—An alternative low valent technetium starting material. Int. J. Rad. Appl. Instrum. Nucl. Med. Biol. 1987, 14, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Machura, B. Structural and spectroscopic properties of rhenium nitrosyl complexes. Coord. Chem. Rev. 2005, 249, 2277–2307. [Google Scholar] [CrossRef]
- Dilworth, J.R. Rhenium chemistry—Then and Now. Coord. Chem. Rev. 2021, 436, 213822. [Google Scholar] [CrossRef]
- Mahmood, A.; Akgun, Z.; Peng, Y.; Mueller, P.; Jiang, Y.; Berke, H.; Jones, A.G.; Nicholson, T. The synthesis and characterization of rhenium nitrosyl complexes. The X-ray crystal structures of [ReBr2(NO)(NCMe)3], [Re(NO)(N5)](BPh4)2] and [ReBr2(NO)(NCMe){py-CH2-NHCH2CH2-N(CH2-py)2}]. Inorg. Chim. Acta 2013, 405, 455–460. [Google Scholar] [CrossRef]
- Abram, U.; Ortner, K.; Hübener, R.; Voigt, A.; Caballho, R.; Vazquez-Lopez, E. Darstellung, Strukturen und EPR-Spektren der Rhenium(II)-Nitrosylkomplexe [Re(NO)Cl2(PPh3)(OPPh3)(OReO3)], [Re(NO)Cl2(OPPh3)2(OReO3)] und [Re(NO)Cl2(PPh3)3][ReO4]. Z. Anorg. Allg. Chem. 1998, 624, 1662–1668. [Google Scholar] [CrossRef]
- Agbossou, F.; O’Connor, E.J.; Garner, C.M.; Quiros Mendez, N.; Fernandez, J.M.; Patton, A.T.; Ramsden, J.A.; Gladysz, J.A. Cyclopentadienyl Rhenium Complexes. Inorg. Synth. 1992, 29, 211–225. [Google Scholar]
- Seidel, S.N.; Prommesberger, M.; Eichenseher, S.; Meyer, O.; Hampel, F.; Gladysz, J.A. Syntheses and structural analyses of chiral rhenium containing amines of the formula (η5-C5H5)Re(NO)(PPh3)((CH2)nNRR′) (n = 0, 1). Inorg. Chim. Acta 2010, 363, 533–548. [Google Scholar] [CrossRef]
- Bernasconi, C.F.; Bhattacharya, S.; Wenzel, P.J.; Olmstead, M.M. Kinetic and Thermodynamic Acidity of [Cp(NO)(PPh3)Re(2,5-dimethyl-3-thienyl)carbene]+. Transition State Imbalance and Intrinsic Barriers. Organometallics 2006, 25, 4322–4330. [Google Scholar] [CrossRef]
- Dilsky, S.; Schenk, W.A. Diastereomeric Halfsandwich Rhenium Complexes Containing Hemilabile Phosphane Ligands. Eur. J. Inorg. Chem. 2004, 2004, 4859–4870. [Google Scholar] [CrossRef]
- Nicholson, T.; Chun, E.; Mahmood, A.; Mueller, P.; Davison, A.; Jones, A.G. Synthesis, spectroscopy and structural analysis of Technetium and Rhenium nitrosyl complexes. Commun. Inorg. Chem. 2015, 3, 31–39. [Google Scholar]
- Blanchard, S.S.; Nicholson, T.; Davison, A.; Davis, W.; Jones, A.G. The synthesis, characterization and substitution reactions of the mixed technetium(I) nitrosyl complex trans-trans-[(NO)(NCCH3)Cl2(PPh3)2Tc]. Inorg. Chim. Acta 1996, 244, 121–130. [Google Scholar] [CrossRef]
- Balasekaran, S.M.; Hagenbach, A.; Drees, M.; Abram, U. [TcII(NO)(trifluoroacetate)4F]2−—Synthesis and reactions. Dalton Trans. 2017, 46, 13544–13552. [Google Scholar] [CrossRef] [PubMed]
- Linder, K.E.; Davison, A.; Dewan, J.C.; Costello, C.E.; Melaknia, S. Nitrosyl complexes of technetium: Synthesis and characterization of [TcI(NO)(CNCMe3)5](PF6)2 and Tc(NO)Br2(CNCMe3)3 and the crystal structure of Tc(NO)Br2(CNCMe3)3. Inorg. Chem. 1986, 25, 2085–2089. [Google Scholar] [CrossRef]
- Ackermann, J.; Noufele, C.N.; Hagenbach, A.; Abram, U. Nitrosyltechnetium(I) Complexes with 2-(Diphenylphosphanyl)aniline. Z. Anorg. Allg. Chem. 2019, 645, 8–13. [Google Scholar] [CrossRef]
- Ackermann, J.; Hagenbach, A.; Abram, U. {Tc(NO)(Cp)(PPh3)}+—A novel technetium(I) core. Chem. Commun. 2016, 52, 10285–10288. [Google Scholar] [CrossRef]
- Ackermann, J.; Abdulkader, A.; Scholtysik, C.; Jungfer, M.R.; Hagenbach, A.; Abram, U. [TcI(NO)X(Cp)(PPh3)] Complexes (X− = I−, I3−, SCN−, CF3SO3−, or CF3COO−) and Their Reactions. Organometallics 2019, 38, 4471–4478. [Google Scholar] [CrossRef]
- Abdulkader, A.; Hagenbach, A.; Abram, U. [Tc(NO)Cl(Cp)(PPh3)]—A Technetium(I) Compound with an Unexpected Synthetic Potential. Eur. J. Inorg. Chem. 2021, 2021, 3812–3818. [Google Scholar]
- Schibli, R.; Marti, N.; Maurer, P.; Spingler, B.; Lehaire, M.-L.; Gramlich, V.; Barnes, C.L. Syntheses and Characterization of Dicarbonyl–Nitrosyl Complexes of Technetium(I) and Rhenium(I) in Aqueous Media: Spectroscopic, Structural, and DFT Analyses. Inorg. Chem. 2005, 44, 683–690. [Google Scholar] [CrossRef]
- Brown, D.S.; Newman, J.L.; Thornback, J.R.; Davison, A. Structure of the tetra-n-butylammoium salt of tetrachloro(methanol)nitrosyltechnetium(II) anion. Acta Cryst. 1987, C43, 1692–1694. [Google Scholar]
- Brown, D.S.; Newman, J.L.; Thornback, J.R.; Pearlstein, R.M.; Davison, A.; Lawson, A. The synthesis and characterisation of the trichloronitrosyl(acetylacetonato)technetium(II) anion, a novel technetium(II) complex. Inorg. Chim. Acta 1988, 150, 193–196. [Google Scholar] [CrossRef]
- Nicholson, T.; Hirsch-Kuchma, M.; Freiberg, E.; Davison, A.; Jones, A.G. The reaction chemistry of a technetium(I) nitrosyl complex with potentially chelating organohydrazines: The X-ray crystal structure of [TcCl2(NO)(HNNC5H4N)(PPh3)]. Inorg. Chim. Acta 1998, 279, 206–209. [Google Scholar]
- De Vries, N.; Cook, J.; Davison, A.; Nicholson, T.; Jones, A.G. Synthesis and characterization of a technetium(III) nitrosyl compound: Tc(NO)(Cl)(SC10H13)3. Inorg. Chem. 1990, 29, 1062–1064. [Google Scholar] [CrossRef]
- Nicholson, T.; Mahmood, A.; Limpa-Amara, N.; Salvarese, N.; Takase, M.K.; Müller, P.; Akgun, Z.; Jones, A.G. Reactions of the tridentate and tetradentate amine ligands di-(2-picolyl)(N-ethyl)amine and 2,5-bis-(2-pyridylmethyl)-2,5 diazohexane with technetium nitrosyl complexes. Inorg. Chim. Acta 2011, 373, 301–305. [Google Scholar] [CrossRef]
- Roca Jungfer, M.; Ernst, M.J.; Hagenbach, A.; Abram, U. [{TcI(NO)(LOMe)(PPh3)Cl}2Ag](PF6) and [TcII(NO)(LOMe)(PPh3)Cl](PF6): Two Unusual Technetium Complexes with a “Kläui-type” Ligand. Z. Anorg. Allg. Chem. 2022, 648, e202100316. [Google Scholar]
- Nicholson, T.L.; Mahmood, A.; Muller, P.; Davison, A.; Storm-Blanchard, S.; Jones, A.G. The synthesis and structural characterization of the technetium nitrosyl complexes [TcCl(NO)(SC5H4N)(PPh3)2] and [Tc(NO)(SC5H4N)2(PPh3)]. Inorg. Chim. Acta 2011, 365, 484–486. [Google Scholar] [CrossRef] [PubMed]
- Balasekaran, S.M.; Spandl, J.; Hagenbach, A.; Köhler, K.; Drees, M.; Abram, U. Fluoridonitrosyl Complexes of Technetium(I) and Technetium(II). Synthesis, Characterization, Reactions, and DFT Calculations. Inorg. Chem. 2014, 53, 5117–5128. [Google Scholar] [CrossRef]
- Nicholson, T.; Hirsch-Kuchma, M.; Shellenbarger-Jones, A.; Davison, A.; Jones, A.G. The synthesis and characterization of a technetium nitrosyl complex with cis-{2-pyridyl,diphenylphosphine} coligands. The X-ray crystal structure of [TcCl2(NO)(pyPPh2-P,N) (pyPPh2-P)]. Inorg. Chim. Acta 1998, 267, 319–322. [Google Scholar] [CrossRef]
- Grunwald, A.C.; Scholtysik, C.; Hagenbach, A.; Abram, U. One Ligand, One Metal, Seven Oxidation States: Stable Technetium Complexes with the “Kläui Ligand”. Inorg. Chem. 2020, 59, 9396–9405. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, T.L.; Mahmood, A.; Refosco, F.; Tisato, F.; Müller, P.; Jones, A.G. The synthesis and X-ray structural characterization of mer and fac isomers of the technetium(I) nitrosyl complex [TcCl2(NO)(PNPpr)]. Inorg. Chim. Acta 2009, 362, 3637–3640. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, T.; Müller, P.; Davison, A.; Jones, A.G. The synthesis and characterization of a cationic technetium nitrosyl complex: The X-ray crystal structure of [TcCl(NO)(DPPE)2](PF6) × CH2Cl2. Inorg. Chim. Acta 2006, 359, 1296–1298. [Google Scholar] [CrossRef]
- Pandey, K.K. Coordination Chemistry of Thionitrosyl (NS), Thiazate (NSO–), Disulfidothionitrate (S,N–), Sulfur Monoxide (SO), and Disulfur Monoxide (S,O) Ligands. Progr. Inorg. Chem. 1992, 40, 445–502. [Google Scholar]
- Døsing, A. The electronic structure and photochemistry of transition metal thionitrosyl complexes. Coord. Chem. Rev. 2016, 306, 544–557. [Google Scholar] [CrossRef]
- Anhaus, J.; Siddiqi, Z.A.; Roesky, H.W. Reaction of Tetrasulfurtetranitride with Rhenium(VII)-chloronitride. The Crystal Structure of [Ph4As+]2[Cl4Re(NS)(NSCl)2−] × CH2Cl2. Z. Naturforsch. 1985, 40b, 740–744. [Google Scholar] [CrossRef]
- Dirican, D.; Pfister, N.; Wozniak, M.; Braun, T. Reactivity of Binary and Ternary Sulfur Halides towards Transition-Metal Compounds. Chem. Eur. J. 2020, 31, 6945–6963. [Google Scholar] [CrossRef]
- Dietrich, A.; Neumüller, B.; Dehnicke, K. (PPh4)2[(SN)ReCl3(μ-N)(μ-NSN)ReCl3(THF)]—Ein Nitrido-Thionitrosyl-Dinitridosulfato-Komplex des Rheniums. Z. Anorg. Allg. Chem. 2000, 626, 1268–1270. [Google Scholar] [CrossRef]
- Reinel, M.; Höcher, T.; Abram, U.; Kirmse, R. Ein Beitrag zu Rhenium(II)-, Osmium(II)- und Technetium(II)-Thionitrosylkomplexe vom Typ [M(NS)Cl4py]: Darstellung, Strukturen und EPR-Spektren. Z. Anorg. Allg. Chem. 2003, 629, 853–861. [Google Scholar] [CrossRef]
- Voigt, A.; Abram, U.; Kirmse, R. Darstellung, Strukturen und EPR-Spektren der Rhenium(II)-Thionitrosylkomplexe trans-[Re(NS)Cl3(MePh2P)2] und trans-[Re(NS)Br3(Me2PhP)2]. Z. Anorg. Allg. Chem. 1999, 625, 1658–1663. [Google Scholar] [CrossRef]
- Hauck, H.-G.; Willing, W.; Müller, U.; Dehnicke, K. [ReCl2(NS)(NSCl)(Pyridin)2], ein Thionitrosyl-chlorthionitrenkomplex des Rheniums. Z. Anorg. Allg. Chem. 1986, 534, 77–84. [Google Scholar] [CrossRef]
- Hübener, R.; Abram, U.; Strähle, J. Isothiocyanato complexes of rhenium II. Synthesis, characterization and structures of ReN(NCS)2(Me2PhP)3 and Re(NS)(NCS)2(Me2PhP)3. Inorg. Chim. Acta 1994, 216, 223–228. [Google Scholar] [CrossRef]
- Ritter, S.; Abram, U. Gemischtligand-Komplexe des Rheniums. VI. Darstellung und Strukturen der Rhenium Thionitrosyl-Komplexe mer-[Re(NS)Cl2(Me2PhP)3] × CH2Cl2 und trans-[Re(NS)Cl3(Me2PhP)2]. Z. Anorg. Allg. Chem. 1994, 620, 1223–1228. [Google Scholar]
- Ritter, S.; Abram, U. Gemischtligandkomplexe des Rheniums. IX. Reaktionen am Nitridoliganden von [ReN(Me2PhP)(Et2dtc)2]. Synthese, Charakterisierung und Kristallstrukturen von [Re(NBCl3)(Me2PhP)(Et2dtc)2], [Re(NGaCl3)(Me2PhP)(Et2dtc)2] und [Re(NS)Cl(Me2PhP)2(Et2dtc)]. Z. Anorg. Allg. Chem. 1995, 622, 965–973. [Google Scholar] [CrossRef]
- Ruf, C.; Behrens, U.; Lork, E.; Mews, R. Reactions of halides with trans-[Re(CO)4(MeCN)(NS)][AsF6]2: Syntheses and structure of trans-[Re(CO)4(Cl)(NS)][AsF6] and [(OC)5ReNS–NS–N[Re(CO)5]S{N–SNRe(CO)5}–CH2–CH2][AsF6]2, an unusual trinuclear bis(thiazyl)rhenium complex. Chem. Commun. 1996, 939–940. [Google Scholar] [CrossRef]
- Baldas, J.; Bonnyman, J.; Mackay, M.F.; Williams, G.A. Structural studies of technetium complexes. V. The preparation and crystal structure of Dichlorobis(diethyldithiocarbamato)thionitrosyltechnetium(III). Austr. J. Chem. 1984, 37, 751–759. [Google Scholar] [CrossRef]
- Kaden, L.; Lorenz, B.; Kirmse, R.; Stach, J.; Behm, H.; Beurskens, P.T.; Abram, U. Synthesis, characterization and x-ray molecular and crystal structure of Tc(NS)Cl3(Me2PhP)(Me2PhPO)-a first example of mixed phosphine/phosphine oxide coordination. Inorg. Chim. Acta 1990, 169, 43–48. [Google Scholar] [CrossRef]
- Baldas, J.; Colmanet, S.F.; Williams, G.A. Preparation and Structure of Dibromobis(N,N-diethyldithiocarbamato)-thionitrosyltechnetium(III). Austr. J. Chem. 1991, 44, 1125–1132. [Google Scholar] [CrossRef]
- Lu, J.; Clarke, M.J. Modulation of Tc–NX (X = O or S) bonds by π-acceptor ligands. J. Chem. Soc. Dalton Trans. 1992, 1243–1248. [Google Scholar] [CrossRef]
- Abram, U.; Schulz Lang, E.; Abram, S.; Wegmann, J.; Dilworth, J.R.; Kirmse, R.; Woolins, J.D. Technetium(V) and rhenium(V) nitrido complexes with bis(diphenyl-thiophosphoryl)amide, N(SPPh2)2−. J. Chem. Soc. Dalton Trans. 1997, 623–630. [Google Scholar] [CrossRef]
- Hiller, W.; Hübener, R.; Lorenz, B.; Kaden, L.; Findeisen, M.; Stach, J.; Abram, U. Structural and spectroscopic studies on mer-dichlorotris(dimethylphenylphosphine)(thionitrosyl)technetium(I), mer-[Tc(NS)Cl2(Me2PhP)3]. Inorg. Chim. Acta 1991, 181, 161–165. [Google Scholar] [CrossRef]
- Lu, J.; Clarke, M.J. Sulfur atom transfer with reduction of a [TcVI≡N]3+ core to a [TcI-N≡S]2+ core. Crystal structure of mer-dichlorotris(4-picoline)(thionitrosyl)technetium. Inorg. Chem. 1990, 29, 4123–4125. [Google Scholar] [CrossRef]
- Abram, U.; Hübener, R.; Wollert, R.; Kirmse, R.; Hiller, W. Synthesis, characterization and reactions of [Tc(NS)X4]− complexes (X = Cl, Br, NCS). Inorg. Chim. Acta 1993, 206, 9–14. [Google Scholar] [CrossRef]
- Dressler, K. Ultraviolett- und Schumannspektren der neutralen und ionisierten Moleküle PO, PS, NS, P2. Helv. Phys. Acta 1955, 28, 563–590. [Google Scholar]
- O’Hare, P.A.G. Dissociation Energies, Enthalpies of Formation, Ionization Potentials, and Dipole Moments of NS and NS+. J. Chem. Phys. 1970, 52, 2992–2996. [Google Scholar] [CrossRef]
- Mews, R. The Thionitrosyl Cation NS+ as a Synthetic Reagent. Angew. Chem. Int. Ed. Engl. 1976, 15, 691–692. [Google Scholar] [CrossRef]
- Clegg, W.; Glemser, O.; Harms, K.; Hartmann, G.; Mews, R.; Noltemeyer, M.; Sheldrick, G.M. Crystal structures of thionitrosyl hexafluoroantimonate(V) and thionitrosyl undecafluorodiantimonate(V) at 293 K and of thionitrosyl undecafluorodiantimonate(V) at 121.5 K: The effect of thermal motion on the apparent NS bond length. Acta Cryst. 1981, 37b, 548–552. [Google Scholar] [CrossRef]
- Kaden, L.; Lorenz, B.; Kirmse, R.; Stach, J.; Abram, U. Darstellung und Charakterisierung von Thionitrosylkomplexen des Technetiums(I) und –(II). Z. Chem. 1985, 25, 29–30. [Google Scholar] [CrossRef]
- Abram, U.; Kirmse, R.; Köhler, K.; Lorenz, B.; Kaden, L. Tc(NX)Y3(Me2PhP)2 Complexes (X = O or S; Y = Cl or Br). Preparation, Characterization and EPR Studies. Inorg. Chim. Acta 1987, 129, 15–20. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Abram, U. Rhenium and Technetium Complexes with N,N-Dialkyl-N’-benzoylthioureas. Inorg. Chem. 2007, 46, 5310–5319. [Google Scholar] [PubMed]
- Hayes, T.R.; Powell, A.S.; Benny, P.D. Synthesis and stability of 2 + 1 complexes of N,N-diethylbenzoylthiourea with [MI(CO)3]+ (M = Re, 99mTc). J. Coord. Chem. 2015, 68, 3432–3448. [Google Scholar] [CrossRef]
- Abram, U.; Abram, S.; Alberto, R.; Schibli, R. Ligand exchange reactions starting from [Re(CO)3Br3]2−. Synthesis, characterization and structures of rhenium(I) tricarbonyl complexes with thiourea and thiourea derivatives. Inorg. Chim. Acta 1996, 248, 193–202. [Google Scholar] [CrossRef]
- Borges, A.P.; Possato, B.; Hagenbach, A.; Machado, A.E.H.; Deflon, V.M.; Abram, U.; Maia, P.I.S. Re(V) complexes containing the phenylimido (NPh2-) core and SNS-thiosemicarbazide ligands. Inorg. Chim. Acta 2021, 516, 120110. [Google Scholar] [CrossRef]
- Mukiza, J.; Gerber, T.I.A.; Hosten, E.C.; Betz, R. Crystal structure of fac-κO,S-(Z)-1,1-diethyl-3-(hydroxido(phenyl)methylene) thiourea-(κS’(Z)-1,1-diethyl-3-(hydroxido(phenyl)methylene)-thiourea)-tricarbonyl rhenium(I), C27H31N4O5ReS2. Z. Kristallogr. New Cryst. Struct. 2015, 230, 50–52. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Abram, U. Rhenium and technetium complexes with tridentate S,N,O ligands derived from benzoylhydrazine. Polyhedron 2009, 28, 3945–3952. [Google Scholar] [CrossRef]
- Salsi, F.; Portapilla, G.B.; Simon, S.; Roca Jungfer, M.; Hagenbach, A.; de Albuquerque, S.; Abram, U. Effect of Fluorination on the Structure and Anti-Trypanosoma cruzy Activity of Oxorhenium(V) Complexes with S,N,S-Tridentate Thiosemicarbazones and Benzoylthioureas. Synthesis and Structures of Technetium(V) Analogues. Inorg. Chem. 2019, 58, 10129–10138. [Google Scholar] [CrossRef]
- Roca Jungfer, M.; Elsholz, L.; Abram, U. Technetium Hydrides Revisited: Syntheses, Structures, and Reactions of [TcH3(PPh3)4] and [TcH(CO)3(PPh3)2]. Organometallics 2021, 40, 3095–3112. [Google Scholar] [CrossRef]
- Kläui, W. The Coordination Chemistry and Organometallic Chemistry of Tridentate Oxygen Ligands with π-Donor Properties. Angew. Chem. Int. Ed. Engl. 1990, 29, 627–637. [Google Scholar] [CrossRef]
- Leung, W.-H.; Zhang, Q.-F.; Yi, X.-Y. Recent developments in the coordination and organometallic chemistry of Kläui oxygen tripodal ligands. Coord. Chem. Rev. 2007, 251, 2266–2279. [Google Scholar] [CrossRef]
- Kramer, D.J.; Davison, A.; Jones, A.G. Structural models for [M(CO)3(H2O)3]+ (M = Tc, Re): Fully aqueous synthesis of technetium and rhenium tricarbonyl complexes of tripodal oxygen donor ligands. Inorg. Chim. Acta 2001, 312, 215–220. [Google Scholar] [CrossRef]
- Leung, W.-H.; Chan, E.Y.Y.; Lai, T.C.Y.; Wong, W.-T. Synthesis and reactivity of nitrido-rhenium and -osmium complexes with an oxygen tripod ligand. J. Chem. Soc. Dalton Trans. 2000, 51–56. [Google Scholar] [CrossRef]
- So, Y.-M.; Chiu, W.-H.; Cheung, W.-M.; Ng, H.-Y.; Lee, H.K.; Sung, H.H.-Y.; Williams, I.D.; Leung, W.H. Heterobimetallic rhenium nitrido complexes containing the Kläui tripodal ligand [Co(η5-C5H5){P(O)(OEt)2}3]−. Dalton Trans. 2015, 44, 5479–5487. [Google Scholar] [CrossRef]
- Banberry, H.J.; Hussain, W.; Evans, I.G.; Hamor, T.A.; Jones, C.J.; McCleverty, J.A.; Schulte, H.-J.; Engles, B.; Kläui, W. The syntheses of high oxidation state metal complexes containing the tripodal ligand [(η5-C5H5)Co{P(OMe)2(O)}3]− and the X-ray crystal structure of [(η5-C5H5)Co{P(OMe)2(O)}3 ReO3]. Polyhedron 1990, 9, 2549–2551. [Google Scholar] [CrossRef]
- Dyckhoff, B.; Schulte, H.-J.; Englert, U.; Spaniol, T.P.; Kläui, W.; Schubiger, P.A. Rhenium-Komplexe von Sauerstoffchelatliganden: Ein Weg zu neuen Radiopharmaka? Z. Anorg. Allg. Chem. 1992, 614, 131–141. [Google Scholar] [CrossRef]
- Abram, U.; Abram, S. Synthese und Charakterisierung neuartiger Technetiumkomplexe mit 1,1-disubstituierten Benzoylthioharnstoffen. Z. Chem. 1983, 23, 228. [Google Scholar] [CrossRef]
- Sullivan, B.P.; Brewer, J.C.; Gray, H.B.; Linebarrier, D.; Mayer, J.M. Nitrido and Oxo Complexes of Rhenium(V). Inorg. Synth. 1992, 29, 146–150. [Google Scholar]
- Kaden, L.; Lorenz, B.; Schmidt, K.; Sprinz, H.; Wahren, M. Nitridokomplexe des Technetium(V). Isotopenpraxis 1981, 17, 174–175. [Google Scholar]
- Baldas, J.; Boas, J.F.; Bonnyman, J.; Williams, G.A. Studies of technetium complexes. Part 6. The preparation, characterisation, and electron spin resonance spectra of salts of tetrachloro- and tetrabromonitridotechnetate(VI): Crystal structure of tetraphenylarsonium tetrachloronitridotechnetate(VI). J. Chem. Soc. Dalton Trans. 1984, 11, 2395–2400. [Google Scholar] [CrossRef]
- Abram, U.; Braun, M.; Abram, S.; Kirmse, R.; Voigt, A. [NBu4][ReNCl4]: Facile synthesis, structure, electron paramagnetic resonance spectroscopy and reactions. J. Chem. Soc. Dalton Trans. 1998, 2, 231–238. [Google Scholar] [CrossRef]
- Grunwald, A.C. Metal Complexes with Tripodal and Chelating Thiourea Ligands towards Nuclear Medical Imaging. Doctoral Thesis, Freie Universität Berlin, Berlin, Germany, 2020. Available online: https://refubium.fu-berlin.de/handle/fub188/30387 (accessed on 1 July 2024).
- Nowak, D. Thionitrosylkomplexe des Rheniums und Technetiums. Doctoral Thesis, Freie Universität Berlin, Berlin, Germany, 2022. Available online: https://refubium.fu-berlin.de/handle/fub188/36899 (accessed on 1 July 2024).
- Kleinpeter, E.; Beyer, L. 1H-NMR-Untersuchung der behinderten Rotation um die C-N-Bindung in 1,1’-Diäthyl-3-benzoylharnstoff-Derivaten. J. Prakt. Chem. 1975, 317, 938–942. [Google Scholar] [CrossRef]
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Res. 2006, 178, 42–55. [Google Scholar] [CrossRef] [PubMed]
- MATLAB Version: 9.13.0 (R2022b); The MathWorks Inc.: Natick, MA, USA, 2022.
- Sheldrick, G. SADABS, vers. 2014/5; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Coppens, P. The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. In Crystallographic Computing; Muksgaard: Copenhagen, Denmark, 1979. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Putz, H.; Brandenburg, K. Diamond—Crystal and Molecular Structure Visualization; Vers. 4.6.8.; Crystal Impact: Bonn, Germany, 2022. [Google Scholar]
Re1–N10 | N10–S10 | Re1–Cl1 | Re1–Cl2 | Re1–Cl3 | Re1–P1 | Re1–P2/O1 | O1–P2 | Re1–N10–S10 | Re1–O1–P2 | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.795(5) | 1.518(5) | 2.353(1) | 2.340(1) | 2.416(1) | 2.540(2) | 2.555(2) | - | 174.4(3) | - |
2 (1) | 1.77(1) 1.77(1) | 1.53(1) 1.52(1) | 2.368(4) 2.357(4) | 2.255(3) 2.332(3) | 2.338(3) 2.366(3) | 2.506(4) 2.584(4) | 2.100(8) 2.099(8) | 1.509(9) 1.497(9) | 167.2(7) 178.4(6) | 155.7(6) 164.5(5) |
Re1–N10 | N10–S10 | Re1–P1 | Re1–S1 | Re1–O1 | Re1–S11 | Re1–O11 | O1–C1 | C1–N1 | N1–C2 |
---|---|---|---|---|---|---|---|---|---|
1.749(4) | 1.571(4) | 2.362(1) | 2.401(1) | 2.101(3) | 2.439(1) | 2.103(4) | 1.296(6) | 1.301(7) | 1.353(7) |
C2–N2 | C2–S1 | O11–C11 | C11–N11 | N11–C12 | C12–N12 | C12–S11 | Re1–N10–S10 | ||
1.319(7) | 1.755(6) | 1.266(6) | 1.329(6) | 1.338(7) | 1.325(7) | 1.758(6) | 176.5(3) |
M1–N10 | N10–S10 | M1–Cl1 | M1–Cl2 | M1–P1 | M1–O2 | M1–O3 | M1–O4 | M1–N10–S10 | |
---|---|---|---|---|---|---|---|---|---|
4a | 1.752(5) | 1.554(5) | 2.337(1) | - | 2.475(1) | 2.071(3) | 2.032(3) | 2.083(3) | 175.4(3) |
5b (1) | 1.732(7) 1.75(1) | 1.540(7) 1.54(1) | 2.339(3) 2.330(3) | 2.343(2) 2.344(3) | - | 2.060(6) 2.068(5) | 2.047(6) 2.057(6) | 2.095(5) 2.088(5) | 171.7(6) 172.0(8) |
g0 | a0M | g‖ | g⊥ | A‖M | A⊥M | |
---|---|---|---|---|---|---|
[Re(NS)Cl(PPh3)(LOMe)]Cl (4aCl) | 1.995 | 420 | 1.842 | 1.986 | 644 | 330 |
[Tc(NS)Cl(PPh3)(LOMe)]Cl (4bCl) | 2.007 | 168 | 1.966 | 2.023 | 252 | 112 |
[Re(NS)Cl2(LOMe)] (5a) | 1.990 | 455 | 1.945 | 1.760 | 787 | 398 |
[Tc(NS)Cl2(LOMe)] (5b) | 1.996 | 177 | 1.943 | 2.021 | 285 | 129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, D.; Hagenbach, A.; Sawallisch, T.E.; Abram, U. Thionitrosyl Complexes of Rhenium and Technetium with PPh3 and Chelating Ligands—Synthesis and Reactivity. Inorganics 2024, 12, 210. https://doi.org/10.3390/inorganics12080210
Nowak D, Hagenbach A, Sawallisch TE, Abram U. Thionitrosyl Complexes of Rhenium and Technetium with PPh3 and Chelating Ligands—Synthesis and Reactivity. Inorganics. 2024; 12(8):210. https://doi.org/10.3390/inorganics12080210
Chicago/Turabian StyleNowak, Domenik, Adelheid Hagenbach, Till Erik Sawallisch, and Ulrich Abram. 2024. "Thionitrosyl Complexes of Rhenium and Technetium with PPh3 and Chelating Ligands—Synthesis and Reactivity" Inorganics 12, no. 8: 210. https://doi.org/10.3390/inorganics12080210
APA StyleNowak, D., Hagenbach, A., Sawallisch, T. E., & Abram, U. (2024). Thionitrosyl Complexes of Rhenium and Technetium with PPh3 and Chelating Ligands—Synthesis and Reactivity. Inorganics, 12(8), 210. https://doi.org/10.3390/inorganics12080210