Effect of Synthesis Conditions on the Photoluminescent Properties of Si-Substituted CaYAlO4:Eu: Sources of Experimental Errors in Solid-State Synthesis
Abstract
1. Introduction
2. Results and Discussion
2.1. Grinding
2.2. Ball Milling
2.3. Precursors
3. Experimental Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nair, G.B.; Swart, H.C.; Dhoble, S.J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 2020, 109, 100622. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, H.; Liu, J.; Sun, Q.; Mou, Y.; Guo, X. Broad-Band and Stable Phosphor-in-Glass Enabling Ultrahigh Color Rendering for All-Inorganic High-Power WLEDs. ACS Appl. Electron. Mater. 2020, 2, 2929–2936. [Google Scholar] [CrossRef]
- Wu, Z.; Li, C.; Zhang, F.; Huang, S.; Wang, F.; Wang, X.; Jiao, H. High-performance ultra-narrow-band green-emitting phosphor LaMgAl11O19:Mn2+ for wide color-gamut WLED backlight displays. J. Mater. Chem. C 2022, 10, 7443–7448. [Google Scholar] [CrossRef]
- Li, J.; Yan, J.; Wen, D.; Khan, W.U.; Shi, J.; Wu, M.; Su, Q.; Tanner, P.A. Advanced red phosphors for white light-emitting diodes. J. Mater. Chem. C 2016, 4, 8611–8623. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Yin, S.; Wu, X.; You, H. Highly efficient green-emitting phosphors with high color rendering for WLEDs. J. Alloys Compd. 2022, 911, 165149. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Y.; Wang, T.; Wu, J.; Zhang, J.; Yu, S.; Zhang, M.; Zhao, L.; Wang, W. Ultra-bright green-emitting phosphors with an internal quantum efficiency of over 90% for high-quality WLEDs. Dalton Trans. 2021, 50, 4159–4166. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, Z.; Wang, N.; Zhou, Q.; Zhou, J.; Ma, L.; Wang, X.; Xu, Y.; Brik, M.G.; Dramićanin, M.D.; et al. Single-Crystal Red Phosphors: Enhanced Optical Efficiency and Improved Chemical Stability for wLEDs. Adv. Opt. Mater. 2020, 8, 1901512. [Google Scholar] [CrossRef]
- Leng, Z.; Bai, H.; Qing, Q.; He, H.; Hou, J.; Li, B.; Tang, Z.; Song, F.; Wu, H. A Zero-Thermal-Quenching Blue Phosphor for Sustainable and Human-Centric WLED Lighting. ACS Sustain. Chem. Eng. 2022, 10, 10966–10977. [Google Scholar] [CrossRef]
- Li, J.; Liang, Q.; Hong, J.-Y.; Yan, J.; Dolgov, L.; Meng, Y.; Xu, Y.; Shi, J.; Wu, M. White Light Emission and Enhanced Color Stability in a Single-Component Host. ACS Appl. Mater. Interfaces 2018, 10, 18066–18072. [Google Scholar] [CrossRef]
- Dai, P.; Wang, Q.; Xiang, M.; Chen, T.-M.; Zhang, X.; Chiang, Y.-W.; Chan, T.-S.; Wang, X. Composition-driven anionic disorder-order transformations triggered single-Eu2+-converted high-color-rendering white-light phosphors. Chem. Eng. J. 2020, 380, 122508. [Google Scholar] [CrossRef]
- Tyagi, A.; Nigam, S.; Sudarsan, V.; Majumder, C.; Vatsa, R.K.; Tyagi, A.K. Why Do Relative Intensities of Charge Transfer and Intra-4f Transitions of Eu3+ Ion Invert in Yttrium Germanate Hosts? Unravelling the Underlying Intricacies from Experimental and Theoretical Investigations. Inorg. Chem. 2020, 59, 12659–12671. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, T.; Oka, R.; Hayakawa, T. Eu3+ Site Distribution and Local Distortion of Photoluminescent Ca3WO6:(Eu3+, K+) Double Perovskites as High-Color-Purity Red Phosphors. Adv. Sci. 2023, 10, 2302559. [Google Scholar] [CrossRef] [PubMed]
- Judd, B.R. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962, 127, 750–761. [Google Scholar] [CrossRef]
- Ofelt, G.S. Intensities of Crystal Spectra of Rare-Earth Ions. J. Chem. Phys. 1962, 37, 511–520. [Google Scholar] [CrossRef]
- Sreena, T.S.; Raj, A.K.V.; Rao, P.P. Effects of charge transfer band position and intensity on the photoluminescence properties of Ca1.9M2O7:0.1Eu3+ (M = Nb, Sb and Ta). Solid State Sci. 2022, 123, 106783. [Google Scholar] [CrossRef]
- Gupta, S.K.; Gupta, R.; Vats, B.G.; Gamare, J.S.; Kadam, R.M. Inversion in usual excitation intensities from solid state phosphor and improved fluorescence of Eu3+ ion in type (IV) deep eutectic solvent. J. Lumin. 2021, 235, 118026. [Google Scholar] [CrossRef]
- Sreevalsa, S.; Ranjith, P.; Ahmad, S.; Sahoo, S.K.; Som, S.; Pandey, M.K.; Das, S. Host sensitized photoluminescence in Sr2.9-3x/2LnxAlO4F: 0.1 Eu3+ (Ln = Gd, Y) for innovative flexible lighting applications. Ceram. Int. 2020, 46, 21448–21460. [Google Scholar] [CrossRef]
- Zhao, Q.; Qian, B.; Wang, Y.; Duan, T.; Zou, H.; Song, Y.; Sheng, Y. Facile synthesis of CaO:Eu3+ and comparative study on the luminescence properties of CaO:Eu3+ and CaCO3:Eu3+. J. Lumin. 2022, 241, 118491. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, Y. The oxidation of copper sulfide minerals during grinding and their interactions with clay particles. Powder Technol. 2012, 230, 112–117. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, X.; Shi, H.; Jiang, P.; Cong, R.; Yang, T. Eu3+ and Tb3+ doped LiCaY5(BO3)6: Efficient red and green phosphors under UV or NUV excitations. J. Lumin. 2022, 242, 118598. [Google Scholar] [CrossRef]
- Sari, A.; Keddam, M.; Guittoum, A. Effect of iron impurity on structural development in ball-milled ZrO2–3mol% Y2O3. Ceram. Int. 2015, 41, 1121–1128. [Google Scholar] [CrossRef]
- Li, M.-X.; Zhao, S.-F.; Lu, Z.; Hirata, A.; Wen, P.; Bai, H.-Y.; Chen, M.; Schroers, J.; Liu, Y.; Wang, W.-H. High-temperature bulk metallic glasses developed by combinatorial methods. Nature 2019, 569, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Chen, Q.; Jiang, K.; Feng, Z.; Lin, Z.; Yu, H.; He, G.; Zhang, J.; Jiang, X.; Zhang, X.; et al. Scaling of the strange-metal scattering in unconventional superconductors. Nature 2022, 602, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.G.; Lee, S.; Yu, H.S.; Zhang, H.R.; Liang, Y.J.; Zavalij, P.Y.; Chen, X.; James, R.D.; Bendersky, L.A.; Davydov, A.V.; et al. Tuning the hysteresis of a metal-insulator transition via lattice compatibility. Nat. Commun. 2020, 11, 3539. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.; Oh, J.H.; Bae, J.-S.; Lee, S. Effects of Heat Treatment on the Microstructure and Optical Properties of Sputtered GeO2 Thin Films. Adv. Eng. Mater. 2023, 25, 2300456. [Google Scholar] [CrossRef]
- Kim, H.; Nam, K.; Park, J.; Kang, M.; Bae, J.-S.; Hong, W.T.; Yang, H.K.; Jeong, J.H.; Oh, J.H.; Lee, S. Hydrogen-mediated manipulation of luminescence color in single-component Eu doped CaYAlSiO4 by defect passivation. J. Alloys Compd. 2023, 932, 167610. [Google Scholar] [CrossRef]
Samples | Grinding Time (min) | Ω2 (10−20 cm2) | Ω4 (10−20 cm2) | R-Factor |
---|---|---|---|---|
As prepared #1 | 5 | 3.484 | 2.467 | 2.284 |
10 | 3.448 | 2.367 | 2.260 | |
20 | 3.435 | 2.374 | 2.251 | |
As prepared #2 | 5 | 3.498 | 2.466 | 2.294 |
10 | 3.374 | 2.269 | 2.212 | |
20 | 3.428 | 2.352 | 2.249 |
Ball Milling Time | Ω2 (10−20 cm2) | Ω4 (10−20 cm2) | R-Factor |
---|---|---|---|
10 h | 3.474 | 2.531 | 2.295 |
5 h | 3.483 | 2.550 | 2.300 |
3 h | 3.493 | 2.614 | 2.307 |
1 h | 3.463 | 2.531 | 2.287 |
Pristine | 3.498 | 2.466 | 2.294 |
Precursors | Ω2 (10−20 cm2) | Ω4 (10−20 cm2) | R-Factor | |
---|---|---|---|---|
Al2O3 | Commercial | 3.498 | 2.466 | 2.294 |
Ball-milled | 3.502 | 2.415 | 2.298 | |
Al(NO3)3·9H2O | Commercial | 3.472 | 2.414 | 2.282 |
Solution | 3.355 | 2.121 | 2.225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.H.; Lee, Y.; Kim, J.; Hong, W.T.; Yang, H.K.; Kang, M.; Lee, S. Effect of Synthesis Conditions on the Photoluminescent Properties of Si-Substituted CaYAlO4:Eu: Sources of Experimental Errors in Solid-State Synthesis. Inorganics 2024, 12, 150. https://doi.org/10.3390/inorganics12060150
Oh JH, Lee Y, Kim J, Hong WT, Yang HK, Kang M, Lee S. Effect of Synthesis Conditions on the Photoluminescent Properties of Si-Substituted CaYAlO4:Eu: Sources of Experimental Errors in Solid-State Synthesis. Inorganics. 2024; 12(6):150. https://doi.org/10.3390/inorganics12060150
Chicago/Turabian StyleOh, Ju Hyun, Yookyoung Lee, Jihee Kim, Woo Tae Hong, Hyun Kyoung Yang, Mijeong Kang, and Seunghun Lee. 2024. "Effect of Synthesis Conditions on the Photoluminescent Properties of Si-Substituted CaYAlO4:Eu: Sources of Experimental Errors in Solid-State Synthesis" Inorganics 12, no. 6: 150. https://doi.org/10.3390/inorganics12060150
APA StyleOh, J. H., Lee, Y., Kim, J., Hong, W. T., Yang, H. K., Kang, M., & Lee, S. (2024). Effect of Synthesis Conditions on the Photoluminescent Properties of Si-Substituted CaYAlO4:Eu: Sources of Experimental Errors in Solid-State Synthesis. Inorganics, 12(6), 150. https://doi.org/10.3390/inorganics12060150