Rational Design of Metal-Based Pharmacologically Active Compounds
Conflicts of Interest
References
- David, S.S.; Meggers, E. Inorganic chemical biology: From small metal complexes in biological systems to metalloproteins. Curr. Opin. Chem. Biol. 2008, 12, 194–196. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Kojima, R.; Schwizer, F.; Bartolami, E.; Heinisch, T.; Matile, S.; Fussenegger, M.; Ward, T.R. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nat. Commun. 2018, 9, 1943. [Google Scholar] [CrossRef] [PubMed]
- Boros, E.; Dyson, P.J.; Gasser, G. Classification of Metal-based Drugs According to Their Mechanisms of Action. Chem 2020, 6, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Nonkuntod, P.; Boonmak, J.; Senawong, T.; Soikum, C.; Chaveerach, P.; Watwiangkham, A.; Suthirakun, S.; Chaveerach, U. The effect of gallic acid on the copper(ii) complex of N -(methylpyridin-2-yl)-amidino- O-methylurea: Crystal structure, DNA interactions, in vitro cytotoxicity and antibacterial activity. New J. Chem. 2023, 47, 12259–12273. [Google Scholar] [CrossRef]
- Maity, R.; Manna, B.; Maity, S.; Jana, K.; Maity, T.; Afzal, M.; Sepay, N.; Samanta, B.C. Synthesis of an Aryl-Semicarbazone-Based Cu(II) Complex for DNA and BSA Interaction and Anti-Cancer Activity against Human Cervix Uteri Carcinoma. Inorganics 2024, 12, 19. [Google Scholar] [CrossRef]
- Mir, I.A.; Ain, Q.U.; Qadir, T.; Malik, A.Q.; Jan, S.; Shahverdi, S.; Nabi, S.A. A review of semicarbazone-derived metal complexes for application in biomedicine and related fields. J. Mol. Struct. 2024, 1295, 136216. [Google Scholar] [CrossRef]
- Tabassum, S.; Al-Asbahy, W.M.; Afzal, M.; Arjmand, F.; Hasan Khan, R. Interaction and photo-induced cleavage studies of a copper based chemotherapeutic drug with human serum albumin: Spectroscopic and molecular docking study. Mol. Biosyst. 2012, 8, 2424. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Wang, B.; Li, X.; Feng, Z.; Ma, C.; Gao, L.; Yu, Y.; Zhang, J.; Zheng, P.; Wang, Y.; et al. Photodynamic therapy improves the clinical efficacy of advanced colorectal cancer and recruits immune cells into the tumor immune microenvironment. Front. Immunol. 2022, 13, 1050421. [Google Scholar] [CrossRef] [PubMed]
- Lazarević, T.; Rilak, A.; Bugarčić, Ž.D. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. Eur. J. Med. Chem. 2017, 142, 8–31. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, C.Y.; Nam, T.G. Ruthenium Complexes as Anticancer Agents: A Brief History and Perspectives. Drug Des. Dev. Ther. 2020, 14, 5375–5392. [Google Scholar] [CrossRef] [PubMed]
- Kenny, R.G.; Marmion, C.J. Toward multi-targeted platinum and ruthenium drugs—A new paradigm in cancer drug treatment regimens? Chem. Rev. 2019, 119, 1058–1137. [Google Scholar] [CrossRef] [PubMed]
- Massoud, J.; Pinon, A.; Gallardo-Villagrán, M.; Paulus, L.; Ouk, C.; Carrion, C.; Antoun, S.; Diab-Assaf, M.; Therrien, B.; Liagre, B. A Combination of Ruthenium Complexes and Photosensitizers to Treat Colorectal Cancer. Inorganics 2023, 11, 451. [Google Scholar] [CrossRef]
- Ghini, V. Cell Metabolomics to Guide the Design of Metal-Based Compounds. Inorganics 2024, 12, 168. [Google Scholar] [CrossRef]
- Khan, H.Y.; Ahmad, A.; Hassan, M.N.; Khan, Y.H.; Arjmand, F.; Khan, R.H. Advances of metallodrug-amyloid β aggregation inhibitors for therapeutic intervention in neurodegenerative diseases: Evaluation of their mechanistic insights and neurotoxicity. Coord. Chem. Rev. 2024, 501, 215580. [Google Scholar]
- Kawahara, M.; Tanaka, K.-I.; Kato-Negishi, M. Crosstalk of copper and zinc in the pathogenesis of vascular dementia. J. Clin. Biochem. Nutr. 2022, 71, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Takashima, H.; Nakane, D.; Akitsu, T. Application of Infrared Free-Electron Laser Irradiation of Protein Complexes Binding to Salen-Type Schiff Base Zn(II) Complexes Using Secondary Conformational Changes in the Proteins for the Treatment of Alzheimer’s Disease. Inorganics 2024, 12, 50. [Google Scholar] [CrossRef]
- Onami, Y.; Koya, R.; Kawasaki, T.; Aizawa, H.; Nakagame, R.; Miyagawa, Y.; Haraguchi, T.; Akitsu, T.; Tsukiyama, K.; Palafox, M.A. Investigation by DFT Methods of the Damage of Human Serum Albumin Including Amino Acid Derivative Schiff Base Zn(II) Complexes by IR-FEL Irradiation. Int. J. Mol. Sci. 2019, 20, 2846. [Google Scholar] [CrossRef] [PubMed]
- Kostova, I. Biological and Medical Significance of Chemical Elements; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023. [Google Scholar]
- Kostova, I. Survey of Main Group Metals and Metalloids in Cancer Treatment. Inorganics 2024, 12, 29. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostova, I. Rational Design of Metal-Based Pharmacologically Active Compounds. Inorganics 2024, 12, 335. https://doi.org/10.3390/inorganics12120335
Kostova I. Rational Design of Metal-Based Pharmacologically Active Compounds. Inorganics. 2024; 12(12):335. https://doi.org/10.3390/inorganics12120335
Chicago/Turabian StyleKostova, Irena. 2024. "Rational Design of Metal-Based Pharmacologically Active Compounds" Inorganics 12, no. 12: 335. https://doi.org/10.3390/inorganics12120335
APA StyleKostova, I. (2024). Rational Design of Metal-Based Pharmacologically Active Compounds. Inorganics, 12(12), 335. https://doi.org/10.3390/inorganics12120335