Improved Photothermal Heating of NaNdF4 Microcrystals via Low-Level Doping of Sm3+ for Thermal-Responsive Upconversion Luminescence Anti-Counterfeiting
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Preparation of Sm3+-Doped NdF3 and NaNdF4 Microcrystals
3.2. Preparation of NaYF4:20%Yb3+/2%Ho3+/5%Ce3+ Upconversion Materials
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.; Wen, S.; Liao, J.; Clarke, C.; Tawfik, S.A.; Ren, W.; Mi, C.; Wang, F.; Jin, D. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat. Photonics 2018, 12, 154–158. [Google Scholar] [CrossRef]
- Pásciak, A.; Marin, R.; Abiven, L.; Pilch-Wróbel, A.; Misiak, M.; Xu, W.; Prorok, K.; Bezkrovnyi, O.; Marciniak, L.; Chaneac, C.; et al. Quantitative comparison of the light-to-heat conversion efficiency in nanomaterials suitable for photothermal therapy. ACS Appl. Mater. Interfaces 2022, 14, 33555–33566. [Google Scholar] [CrossRef] [PubMed]
- Jaque, D.; Maestro, M.; Rosal, B.D.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.L.; Rodriguez, E.M.; Solé, J.G. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530. [Google Scholar] [CrossRef]
- Zhu, X.; Feng, W.; Chang, J.; Tan, Y.; Li, J.; Chen, M.; Sun, Y.; Li, F. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat. Commun. 2015, 7, 10437. [Google Scholar] [CrossRef] [PubMed]
- Pang, T.; Jian, R.; Xie, J.; Lu, W. Up-conversion luminescence and photo-thermal effect of KY3F10:Yb3+,Ho3+ nanocrystals. J. Phys. D Appl. Phys. 2018, 51, 355301. [Google Scholar] [CrossRef]
- Pang, T.; Peng, W.; Yang, M.; Xie, J.; Lu, W. Synthesis, upconversion luminescence and optical heating of hexagonal NaGdF4:Yb3+,Er3+. J. Rare Earth. 2018, 36, 1136–1140. [Google Scholar] [CrossRef]
- Shao, Q.; Ouyang, L.; Jin, L.; Jiang, J. Multifunctional nanoheater based on NaGdF4:Yb3+,Er3+ upconversion nanoparticles. Opt. Express 2015, 23, 30057–30066. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, S.; Li, X.; Zhang, J.; Sun, J.; Xia, H.; Hua, R.; Chen, B. Temperature sensing, excitation power dependent fluorescence branching ratios, and photothermal conversion in NaYF4:Er3+/Yb3+@NaYF4:Tm3+/Yb3+ core-shell particles. Opt. Mater. Express 2018, 8, 368–384. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Pang, T.; Chen, B.; Xin, F.; Xing, M.; Tian, M.; Fu, Y.; Luo, X.; Tian, Y. Engineering Er3+-sensitized nanocrystals to enhance NIR II-responsive upconversion luminescence. Nanoscale 2022, 14, 962–968. [Google Scholar] [CrossRef]
- Li, Y.; Chen, B.; Tong, L.; Zhang, X.; Xu, S.; Li, X.; Zhang, J.; Sun, J.; Wang, X.; Zhang, Y.; et al. A temperature self-monitoring NaYF4:Dy3+/Yb3+@NaYF4:Er3+/Yb3+ core-shell photothermal converter for photothermal therpy application. Results Phys. 2019, 15, 102704. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, B.; Yu, H.; Li, X.; Zhang, J.; Sun, J.; Tong, L.; Wu, Z.; Zhong, H.; Hua, R.; et al. Rod-shaped NaY(MoO4)2:Sm3+/Yb3+ nanoheaters for photothermal conversion: Influence of doping concentration and excitation power density. Sens. Actuators B Chem. 2016, 234, 286–293. [Google Scholar] [CrossRef]
- Pásciak, A.; Miśiak, M.; Trejgis, K.; Elzbieciak-Piecka, K.; Bezkrovnyi, O.; Marciniak, Ł.; Bednarkiewicz, A. Highly-doped lanthanide nanomaterials for efficient photothermal conversion-selection of the most promising ions and matrices. J. Alloys Compd. 2023, 934, 167900. [Google Scholar] [CrossRef]
- Rocha, U.; Kumar, K.U.; Jacinto, C.; Ramiro, J.; Caamano, A.J.; Solé, J.G.; Jaque, D. Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents. Appl. Phys. Lett. 2014, 104, 053703. [Google Scholar] [CrossRef]
- Yu, S.; Cao, R.; Li, J.; Meng, L. Controlled synthesis of NdF3 and NaNdF4 micro- or nanocrystals by one-pot microwave-assisted hydrothermal reaction. J. Fluorine Chem. 2015, 178, 286–290. [Google Scholar] [CrossRef]
- Li, M.; Hao, Z.H.; Peng, X.N.; Li, J.B.; Yu, X.F.; Wang, Q.Q. Controllable energy transfer in fluorescence upconversion of NdF3 and NaNdF4 nanocrystals. Opt. Express 2010, 18, 3364–3369. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Hu, W.; Zhao, H.; Miao, X.; Guan, Y.; Cai, W.; Zeng, Z.; Fan, Q.; Tan, T.T.Y. Generating new cross-relaxation pathway by coating prussian blue on NaNdF4 to fabricate enhanced photothermal agents. Angew. Chem. Int. Ed. 2019, 58, 8536–8540. [Google Scholar] [CrossRef]
- Xu, S.; Xiang, S.; Zhang, Y.; Zhang, J.; Li, X.; Sun, J.; Cheng, L.; Chen, B. 808 nm laser induced photothermal effect of Sm3+/Nd3+ doped NaY(WO4)2 microstructures. Sens. Actuators B Chem. 2017, 240, 386–391. [Google Scholar] [CrossRef]
- Xu, L.; Zheng, H.; Pang, T.; Mao, J. Multicolor luminescence of hexagonal NaYF4:Yb3+/Ho3+/Ce3+ microcrystals with tunable morphology under 940 nm excitation for temperature-responsvie anti-counterfeiting. J. Rare Earth. 2022, 40, 406–414. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, L.; Ye, R.; Jia, G.; Hua, Y.; Deng, D.; Xu, S. Integrating positive and negative thermal quenching effect for ultrasensitive ratiometric temperature sensing and anti-counterfeiting. ACS Appl. Mater. Interfaces 2021, 13, 23951–23959. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Shao, Q.; Deng, X.; Song, D.; Han, S.; Dong, Y.; Jiang, J. Thermally induced multicolor emissions of upconversion hybrids with large color shifts for anticounterfeiting applications. J. Mater. Chem. C 2019, 7, 11770–11775. [Google Scholar] [CrossRef]
- Shao, Q.; Zhang, G.; Ouyang, L.; Hu, Y.; Dong, Y.; Jiang, J. Emission color tuning of core/shell upconversion nanoparticles by modulating the laser power or temperature. Nanoscale 2017, 9, 12132–12141. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Ning, L.; Gao, Y.; Qiao, J.; Song, E.; Chen, Z.; Zhou, Y.; Wang, J.; Molokeev, M.S.; Ke, X.; et al. Glass crystallization making red phosphors for high-power warm white lighting. Light Sci. Appl. 2021, 10, 56. [Google Scholar] [CrossRef]
- Benayas, A.; Rosal BDPérez-Delgado, A.; Santacruz-Gómez, K.; Jaque, D.; Hirata, G.A.; Vetrone, F. Nd:YAG near-infrared luminescent nanothermometers. Adv. Opt. Mater. 2015, 3, 687–694. [Google Scholar] [CrossRef]
- Xia, Z.; Luo, Y.; Guan, M.; Liao, L. Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/Yb3+. Opt. Expresses 2012, 20, A722–A728. [Google Scholar] [CrossRef]
- Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A. Luminescence properties of the Sm-doped borate glasses. J. Lumin. 2015, 166, 264–275. [Google Scholar] [CrossRef]
- Madej, D.; Kruk, A. Classical and new insights into the methodology for characterizing the hydration of calcium aluminate cements. Cem. Wapno Beton 2023, 28, 318–328. [Google Scholar] [CrossRef]
- Carnall, W.T.; Fields, P.R.; Rajnak, K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 1968, 49, 4424. [Google Scholar] [CrossRef]
- Kong, M.; Gu, Y.; Chai, Y.; Ke, J.; Liu, Y.; Xu, X.; Li, Z.; Feng, W.; Li, F. Luminescence interference-free lifetime nanothermometry pinpoints in vivo temperature. Sci. China Chem. 2021, 64, 974–984. [Google Scholar] [CrossRef]
- Pang, T.; Wang, J. Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors. Mater. Res. Express 2018, 5, 015049. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, R.; Pang, T. Improved Photothermal Heating of NaNdF4 Microcrystals via Low-Level Doping of Sm3+ for Thermal-Responsive Upconversion Luminescence Anti-Counterfeiting. Inorganics 2024, 12, 327. https://doi.org/10.3390/inorganics12120327
Jian R, Pang T. Improved Photothermal Heating of NaNdF4 Microcrystals via Low-Level Doping of Sm3+ for Thermal-Responsive Upconversion Luminescence Anti-Counterfeiting. Inorganics. 2024; 12(12):327. https://doi.org/10.3390/inorganics12120327
Chicago/Turabian StyleJian, Ronghua, and Tao Pang. 2024. "Improved Photothermal Heating of NaNdF4 Microcrystals via Low-Level Doping of Sm3+ for Thermal-Responsive Upconversion Luminescence Anti-Counterfeiting" Inorganics 12, no. 12: 327. https://doi.org/10.3390/inorganics12120327
APA StyleJian, R., & Pang, T. (2024). Improved Photothermal Heating of NaNdF4 Microcrystals via Low-Level Doping of Sm3+ for Thermal-Responsive Upconversion Luminescence Anti-Counterfeiting. Inorganics, 12(12), 327. https://doi.org/10.3390/inorganics12120327