Immobilization of Bromelain on Gold Nanoparticles for Comprehensive Detection of Their Antioxidant, Anti-Angiogenic, and Wound-Healing Potentials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of AuNPs and AuNPs-Br
2.2. TEM
2.3. Free Radical-Scavenging Activity
2.4. Serological and Hematological Analysis
2.5. Evolution of the In Vivo Wound Healing Activity
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of the AuNPs and Immobilization of Bromelain
3.2.1. Synthesis of Gold Nanoparticles
3.2.2. Preparation of Bromelain Solution
3.2.3. Adsorption Process
3.2.4. Characterization
3.3. Bromelain Standard Curve Preparation and Quantification Using Spectroscopy
3.4. Free Radical-Scavenging Activity
3.5. In Vivo Study
3.5.1. Experimental Design
3.5.2. Fabrication of Experimental Wounds
3.5.3. Contraction of Wound Analysis
3.5.4. Biochemical Assays
3.5.5. Histological Analysis
3.6. In Ovo Angiogenesis Study
Evaluation of Chorioallantoic Membrane (CAM)
3.7. Statistics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jain, M.; Amera, G.M.; Muthukumaran, J.; Singh, A.K. Insights into biological role of plant defense proteins: A review. Biocatal. Agric. Biotechnol. 2022, 40, 102293. [Google Scholar] [CrossRef]
- Delimaris, I. Adverse Effects Associated with Protein Intake above the Recommended Dietary Allowance for Adults. ISRN Nutr. 2013, 2013, 26929. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Martín-Rodríguez, A.; Redondo-Flórez, L.; López-Mora, C.; Yáñez-Sepúlveda, R.; Tornero-Aguilera, J.F. New Insights and Potential Therapeutic Interventions in Metabolic Diseases. Int. J. Mol. Sci. 2023, 24, 10672. [Google Scholar] [CrossRef] [PubMed]
- Mótyán, J.A.; Tóth, F.; Tőzsér, J. Research applications of proteolytic enzymes in molecular biology. Biomolecules 2013, 3, 923–942. [Google Scholar] [CrossRef]
- Contesini, F.J.; Melo, R.R.; Sato, H.H. An overview of Bacillus proteases: From production to application. Crit. Rev. Biotechnol. 2018, 38, 321–334. [Google Scholar] [CrossRef]
- Balakireva, A.V.; Kuznetsova, N.V.; Petushkova, A.I.; Savvateeva, L.V.; Zamyatnin, A.A., Jr. Trends and Prospects of Plant Proteases in Therapeutics. Curr. Med. Chem. 2019, 26, 465–486. [Google Scholar] [CrossRef]
- Singh, R.; Gautam, P.; Sharma, C.; Osmolovskiy, A. Fibrin and Fibrinolytic Enzyme Cascade in Thrombosis: Unravelling the Role. Life 2023, 13, 2196. [Google Scholar] [CrossRef]
- Majid, O.W.; Al-Mashhadani, B.A. Perioperative Bromelain reduces pain and swelling and improves quality of life measures after mandibular third molar surgery: A randomized, double-blind, placebo-controlled clinical trial. J. Oral. Maxillofac. Surg. 2014, 72, 1043–1048. [Google Scholar] [CrossRef]
- Colletti, A.; Procchio, C.; Pisano, M.; Martelli, A.; Pellizzato, M.; Cravotto, G. An Evaluation of the Effects of Pineapple-Extract and Bromelain-Based Treatment after Mandibular Third Molar Surgery: A Randomized Three-Arm Clinical Study. Nutrients 2024, 16, 784. [Google Scholar] [CrossRef]
- Dessale, M.; Mengistu, G.; Mengist, H.M. Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. Int. J. Nanomed. 2022, 17, 3735–3749. [Google Scholar] [CrossRef]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Jeong, Y.Y.; Jon, S.A. Drug-loaded aptamer−gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010, 4, 3689–3696. [Google Scholar] [CrossRef] [PubMed]
- Blau, R.; Krivitsky, A.; Epshtein, Y.; Satchi-Fainaro, R. Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine? Drug Resist. Updates 2016, 27, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Goddard, Z.R.; Marín, M.J.; Russell, D.A.; Searcey, M. Active targeting of gold nanoparticles as cancer therapeutics. Chem. Soc. Rev. 2020, 49, 8774–8789. [Google Scholar] [CrossRef]
- Wang, M.; Chang, M.; Chen, Q.; Wang, D.; Li, C.; Hou, Z.; Lin, J.; Jin, D.; Xing, B. Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy/phototherapy. Biomaterials 2020, 252, 120093. [Google Scholar] [CrossRef]
- Kubis, N.; Levy, B.I. Vasculogenesis and angiogenesis: Molecular and cellular controls: Part 1: Growth factors. Interv. Neuroradiol. 2003, 9, 227–237. [Google Scholar] [CrossRef]
- Liu, Z.L.; Chen, H.H.; Zheng, L.L.; Sun, L.P.; Shi, L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023, 8, 198. [Google Scholar] [CrossRef]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef]
- Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Mustafa, D.E.; Yang, T.; Xuan, Z.; Chen, S.; Tu, H.; Zhang, A. Surface Plasmon Coupling Effect of Gold Nanoparticles with Different Shape and Size on Conventional Surface Plasmon Resonance Signal. Plasmonics 2010, 5, 221–231. [Google Scholar] [CrossRef]
- Breausche, F.E.; Somerlot, A.; Walder, J.; Osei, K.; Okyem, S.; Driskell, J.D. Immobilization of Thiol-Modified Horseradish Peroxidase on Gold Nanoparticles Enhances Enzyme Stability and Prevents Proteolytic Digestion. Langmuir 2024, 40, 13957–13967. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.S.; Wu, C.T.; Chen, C.; Huang, C.C.; Yeh, Y.L.; Yang, Y.S.; Ko, F.H. Catalytic behaviors in modulating enzymatic activity through different-sized gold nanoparticles. In Proceedings of the 2010 3rd International Nanoelectronics Conference (INEC), Hong Kong, China, 3–8 January 2010; pp. 334–335. [Google Scholar] [CrossRef]
- Rivera, R.B.P.; Unabia, R.B.; Reazo, R.L.D.; Lapening, M.A.; Lumod, R.M.; Ruda, A.G.; Omping, J.L.; Magdadaro, M.R.D.; Sayson, N.L.B.; Latayada, F.S.; et al. Influence of the Gold Nanoparticle Size on the Colorimetric Detection of Histamine. ACS Omega 2024, 9, 33652–33661. [Google Scholar] [CrossRef] [PubMed]
- Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055. [Google Scholar] [CrossRef]
- Shenoy, D.; Little, S.; Langer, R.; Amiji, M. Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. Biomaterials 2005, 26, 6583–6590. [Google Scholar] [CrossRef]
- Giri, K.; Trewyn, B.G.; Stellmaker, M.P.; Lin, V.S.Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 5038–5044. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Murphy, C.J.; Gole, A.M.; Hunyadi, S.E.; Stone, J.W.; Sisco, P.N.; Alkilany, A.; Kinard, B.E.; Hankins, P. Chemical sensing and imaging with metallic nanorods. Chem. Commun. 2008, 5, 544–557. [Google Scholar] [CrossRef]
- Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21. [Google Scholar] [CrossRef]
- Lynch, I.; Dawson, K.A. Protein-nanoparticle interactions. Nano Today 2008, 3, 40–47. [Google Scholar] [CrossRef]
- Kiroula, N.; Negi, J.S.; Singh, K.; Rawat, R.; Singh, B. Preparation and characterization of ganciclovir-loaded glutathione modified gold nanoparticles. Indian J. Pharm. Sci. 2016, 78, 313–319. [Google Scholar] [CrossRef]
- Oliveira, A.E.F.; Pereira, A.C.; Resende, M.A.C.; Ferreira, L.F. Gold Nanoparticles: A Didactic Step-by-Step of the Synthesis Using the Turkevich Method, Mechanisms, and Characterizations. Analytica 2023, 4, 250–263. [Google Scholar] [CrossRef]
- Eustis, S.; El-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282. [Google Scholar] [CrossRef] [PubMed]
- Romelle, F.D.; Rani, P.A.; Manohar, R.S. Chemical composition of some selected fruit peels. Eur. J. Food Sci. Technol. 2016, 4, 12–21. [Google Scholar]
- Saraswaty, V.; Risdian, C.; Primadona, I.; Andriyani, R.; Andayani, D.G.S.; Mozef, T. 1st International Symposium on Green Technology for Value Chains 2016; IOP Publishing: Bristol, UK, 2016; p. 012013. [Google Scholar]
- Saravanan, P.; Muthuvelayudham, R.; Viruthagiri, T. Enhanced Production of Cellulase from Pineapple Waste by Response Surface Methodology. J. Eng. 2013, 2013, 979547. [Google Scholar] [CrossRef]
- Ashij, M.A.; Al-Shmgani, H.S.; Khalil, A.A.; Mohammed, H.A. Synthesis and Characterization of Proteolytic Enzyme Loaded on Silver Nanoparticles. Ibn AL-Haitham J. Pure Appl. Sci. 2024, 37, 43–53. [Google Scholar] [CrossRef]
- Al-Rikabi, R.F.; Al-Shmgani, H.S. Evaluation of hesperidin protective effect on lipopolysaccharide-induced inflammation and lipid peroxidation in BALB/c male mice. Res. J. Pharm. Technol. 2018, 11, 5513–5516. [Google Scholar] [CrossRef]
- Abeed, B.S.; Al-Shmgani, H.S. Evaluation of the Potential Protective Role of Galangin Associated with Gold Nanoparticles in the Histological and Functional Structure of Testes of Adult Male Albino Mice Administrated with Carbon Tetrachloride. Baghdad Sci.J. 2024, 21, 2512–2521. [Google Scholar] [CrossRef]
- Pivodová, V.; Franková, J.; Galandáková, A.; Ulrichová, J. In Vitro AuNPs’ Cytotoxicity and Their Effect on Wound Healing. Nanobiomedicine 2015, 2, 7. [Google Scholar] [CrossRef]
- Sharma, M.; Gupta, N.; Pandey, E. Implications of nasal delivery of Bromelain on its pharmacokinetics, tissue distribution and pharmacodynamic profile—A preclinical study. PLoS ONE 2022, 17, e0277849. [Google Scholar] [CrossRef] [PubMed]
- Errasti, M.E.; Prospitti, A.; Viana, C.A.; Gonzalez, M.M.; Ramos, M.V.; Rotelli, A.E.; Caffini, N.O. Effects on fibrinogen, fibrin, and blood coagulation of proteolytic extracts from fruits of Pseudananas macrodontes, Bromelia balansae, and B. hieronymi (Bromeliaceae) in comparison with Bromelain. Blood Coagul. Fibrinolysis 2016, 27, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Hikisz, P.; Bernasinska-Slomczewska, J. Beneficial properties of Bromelain. Nutrients 2021, 13, 4313. [Google Scholar] [CrossRef] [PubMed]
- Ausaj, A.A.; Abed, W.B.; Al-Shmgani, H.S. The Use of Proteolytic Enzymes in Inhibiting Cancer as Anti-Angiogenesis Agents: Mechanisms of Action. Opera Med. Physiol. 2024, 11, 24–31. [Google Scholar]
- Isabela Avila-Rodríguez, M.; Meléndez-Martínez, D.; Licona-Cassani, C.; Manuel Aguilar-Yañez, J.; Benavides, J.; Lorena Sánchez, M. Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed. Rep. 2020, 13, 3–14. [Google Scholar] [CrossRef]
- Rahayu, P.; Agustina, L.; Tjandrawinata, R.R. Tacorin, an extract from Ananas comosus stem, stimulates wound healing by modulating the expression of tumor necrosis factor α, transforming growth factor β and matrix metalloproteinase 2. FEBS Open Bio. 2017, 7, 1017–1025. [Google Scholar] [CrossRef]
- Lord, M.S.; Ellis, A.L.; Farrugia, B.L.; Whitelock, J.M.; Grenett, H.; Li, C.; O’Grady, R.L.; DeCarlo, A.A. Perlecan and vascular endothelial growth factor-encoding DNA-loaded chitosan scaffolds promote angiogenesis and wound healing. J. Control. Release 2017, 250, 48–61. [Google Scholar] [CrossRef]
- Al-Shmgani, H.S.; Kadri, Z.H.M.; Al-Halbosiy, M.M.; Dewir, Y.H. Phytochemical analysis, cytotoxicity and antioxidant activity of cuckoo pint (Arum maculatum) leaf extract. Acta Biol. Szeged. 2020, 63, 119–124. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Tu, T.; Younis, M.R.; Zhu, K.S.; Liu, H.; Lei, S.; Qu, J.; Lin, J.; Huang, P. Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury. Theranostics 2021, 11, 9904–9917. [Google Scholar] [CrossRef]
- Seiwerth, S.; Rucman, R.; Turkovic, B.; Sever, M.; Klicek, R.; Radic, B.; Drmic, D.; Stupnisek, M.; Misic, M.; Vuletic, L.B.; et al. BPC 157 and standard angiogenic growth factors. Gastrointestinal tract healing, lessons from tendon, ligament, muscle and bone healing. Curr. Pharm. Des. 2018, 24, 1972–1989. [Google Scholar] [CrossRef]
- Chen, C.H.; Hsia, C.C.; Hu, P.A.; Yeh, C.H.; Chen, C.T.; Peng, C.L.; Wang, C.H.; Lee, T.S. Bromelain ameliorates atherosclerosis by activating the TFEB-mediated autophagy and antioxidant pathways. Antioxidants 2022, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Schultz, G.S.; Chin, G.A.; Moldawer, L.; Diegelmann, R.F. Principles of Wound Healing. In Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists [Internet]; Fitridge, R., Thompson, M., Eds.; University of Adelaide Press: Adelaide, SA, Australia, 2011; p. 23. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534261 (accessed on 26 March 2021).
- Leu, J.G.; Chen, S.A.; Chen, H.M.; Wu, W.M.; Hung, C.F.; Yao, Y.D.; Tu, C.S.; Liang, Y.J. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 767–775. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.I.; Mutlak, B.H. Synthesis and Characterization of Gold Nanoparticles and Gold Nanoparticles Loaded with Bromelain. Iraqi J. Phys. 2024, 22, 37–49. [Google Scholar] [CrossRef]
- Butler, K.S.; Brinker, C.J.; Leong, H.S. Bridging the In Vitro to In Vivo gap: Using the Chick Embryo Model to Accelerate Nanoparticle Validation and Qualification for In Vivo studies. ACS Nano 2022, 16, 19626–19650. [Google Scholar] [CrossRef]
- Salvo, J.; Sandoval, C. Role of copper nanoparticles in wound healing for chronic wounds: Literature review. Burn. Trauma 2022, 10, tkab047. [Google Scholar] [CrossRef]
- Zhafira Mafaz, Z.; Hariono, A.M.; Nurhidayat, L. Antiangiogenic Activity of Pineapple (Ananas comosus) Stem Extract on Chicken Embryo’s Chorioallantois Membrane (CAM). BIO Web Conf. 2024, 94, 02007. Available online: https://api.semanticscholar.org/CorpusID:268758629 (accessed on 3 May 2021).
- Qaddoori, M.H.; Al-Shmgani, H.S. Galangin-Loaded Gold Nanoparticles: Molecular Mechanisms of Antiangiogenesis Properties in Breast Cancer. Int. J. Breast Cancer 2023, 2023, 3251211. [Google Scholar] [CrossRef]
- Bayat, S.; Rabbani Zabihi, A.; Amel Farzad, S.; Movaffagh, J.; Hashemi, E.; Arabzadeh, S.; Hahsemi, M. Evaluation of debridement effects of bromelain-loaded sodium alginate nanoparticles incorporated into chitosan hydrogel in animal models. Iran. J. Basic Med. Sci. 2021, 24, 1404–1412. [Google Scholar] [CrossRef]
- Ashij, M.A.; Al-Shmgani, H.S.; Sulaiman, G.M.; Mohammed, H.A.; Abdalrazaq, E.A.; Albukhaty, S. Investigation of Antibacterial Activity and Wound Healing Promotion Properties Induced by Bromelain-Loaded Silver Nanoparticles. Plasmonics 2024, 19, 1903–1916. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Bhat, F.A.; Raja Singh, P.; Mukherjee, S.; Elumalai, P.; Das, S.; Patra, C.R.; Arunakaran, J. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif. 2016, 49, 678–697. [Google Scholar] [CrossRef]
- Al-Shmgani, H.S.A.; Mohammed, W.H.; Sulaiman, G.M.; Saadoon, A.H. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Bayram, E.N.; Al-Bakri, N.A.; A-Shmgani, H.S. Zinc chloride can mitigate the alterations in metallothionein and some apoptotic proteins induced by cadmium chloride in mice hepatocytes: A histological and immunohistochemical study. J. Toxicol. 2023, 2023, 2200539. [Google Scholar] [CrossRef] [PubMed]
Group | WBCs | RBCs | Platelets |
---|---|---|---|
(Mean ± S.E.) | |||
Control (−ve) | 8.18 ± 0.17 a | 8.81 ± 0.01 a | 1204.5 ± 20.5 a |
Control (+ve) | 8.51 ± 0.14 b | 8.54 ± 0.08 ab | 914.5 ± 1.5 ab |
Bromelain | 10.50 ± 0.17 abc | 8.90 ± 0.07 bc | 1038.5 ± 15.5 abc |
AuNPs | 8.68 ± 0.05 cd | 7.53 ± 0.01 abcd | 1157.5 ± 6.5 abcd |
AuNPs-Br | 10.90 ± 0.33 abd | 9.11 ± 0.11 bd | 907.00 ± 10 acd |
p value | <0.001 ** | <0.001 ** | <0.001 ** |
Groups | ROS (pg mL−1) | TNF-α (pg mL−1) | Collagen III (ng mL−1) |
---|---|---|---|
(Mean ± S.E.) | |||
Control (−ve) | 365.46 ± 17.93 a | 315.19 ± 118.67 a | 10.97 ± 3.28 a |
Control (+ve) | 378.97 ± 76.31 b | 110.61 ± 1.38 a | 25.07 ± 1.46 ab |
AuNPs | 107.94 ± 12.14 abc | 54.93 ± 16.35 a | 58.47 ± 6.39 abc |
AuNPs-Br | 202.02 ± 5.22 b | 71.96 ± 12.39 a | 39.60 ± 7.64 abc |
Bromelain | 455.46 ± 96.64 c | 216.62 ± 80.24 | 24.21 ± 0.44 ac |
p value | 0.008 ** | 0.05 * | <0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausaj, A.A.; Al-Shmgani, H.S.; Abid, W.B.; Gadallah, A.A.; Mashlawi, A.M.; Khormi, M.A.; Alamri, A.A.; Abada, E. Immobilization of Bromelain on Gold Nanoparticles for Comprehensive Detection of Their Antioxidant, Anti-Angiogenic, and Wound-Healing Potentials. Inorganics 2024, 12, 325. https://doi.org/10.3390/inorganics12120325
Ausaj AA, Al-Shmgani HS, Abid WB, Gadallah AA, Mashlawi AM, Khormi MA, Alamri AA, Abada E. Immobilization of Bromelain on Gold Nanoparticles for Comprehensive Detection of Their Antioxidant, Anti-Angiogenic, and Wound-Healing Potentials. Inorganics. 2024; 12(12):325. https://doi.org/10.3390/inorganics12120325
Chicago/Turabian StyleAusaj, Amal Ahmed, Hanady S. Al-Shmgani, Wijdan Basheer Abid, Abdelalim A. Gadallah, Abadi M. Mashlawi, Mohsen A. Khormi, Abdullah Ali Alamri, and Emad Abada. 2024. "Immobilization of Bromelain on Gold Nanoparticles for Comprehensive Detection of Their Antioxidant, Anti-Angiogenic, and Wound-Healing Potentials" Inorganics 12, no. 12: 325. https://doi.org/10.3390/inorganics12120325
APA StyleAusaj, A. A., Al-Shmgani, H. S., Abid, W. B., Gadallah, A. A., Mashlawi, A. M., Khormi, M. A., Alamri, A. A., & Abada, E. (2024). Immobilization of Bromelain on Gold Nanoparticles for Comprehensive Detection of Their Antioxidant, Anti-Angiogenic, and Wound-Healing Potentials. Inorganics, 12(12), 325. https://doi.org/10.3390/inorganics12120325