Synthesis Comparative Electrochemistry and Spectroelectrochemistry of Metallocenyl β-Diketonato Dicarbonyl Complexes of Rhodium(I)—Cytotoxicity of [Rh(FcCOCHCOCF3)(CO)2]
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Electrochemistry
2.3. Spectroelectrochemistry
2.4. Cytotoxicity of 10
3. Materials and Methods
3.1. General Information
3.2. Synthesis of New Complexes
3.2.1. 1–Ferrocenyl–3–osmocenylpropane–1,3–dione, FcCOCH2COOc, 5
3.2.2. [Rh(β-diketonato)(cod)] and [Rh(β-diketonato)(CO)2] Complexes
[Rh(FcCOCHCORc)(cod)] 8 and [Rh(FcCOCHCOOc)(cod)] 9
[Rh Rh(FcCOCHCORc)(CO)2] 12 and [Rh(FcCOCHCOOc)(CO)2] 13
3.3. Electrochemistry
3.4. Spectroelectrochemistry
3.5. Cytotoxic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ohata, J.; Ball, Z.T. Rhodium at the Chemistry-Biology Interface. Dalton Trans. 2018, 47, 14855–14860. [Google Scholar] [CrossRef] [PubMed]
- Maitlis, P.M.; Haynes, A.; Sunley, G.J.; Howard, M.J. Methanol carbonylation revisited: Thirty years on. J. Chem. Soc. Dalton Trans. 1996, 2187–2196. [Google Scholar] [CrossRef]
- Van den Berg, M.; Minnaard, A.J.; Haak, R.M.; Leeman, M.; Schudde, E.P.; Meetsma, A.; Feringa, B.L.; De Vries, A.H.M.; Maljaars, C.E.P.; Willans, C.E.; et al. Monodentate Phosphoramidites: A Breakthrough in Rhodium-Catalysed Asymmetric Hydrogenation of Olefins. Adv. Synth. Catal. 2003, 345, 308–323. [Google Scholar] [CrossRef]
- Pedrós, M.G.; Masdeu-Bultó, A.M.; Bayardon, J.; Sinou, D. Hydroformylation of alkenes with rhodium catalyst in supercritical carbon dioxide. Catal. Lett. 2006, 107, 205–208. [Google Scholar] [CrossRef]
- Mertens, P.; Boman, R.; Dickheuer, S.; Krasikov, Y.; Krimmer, A.; Leichtle, D.; Liegeois, B.; Linsmeier, C.; Litnovsky, A.; Marchuk, O.; et al. On the use of rhodium mirrors for optical diagnostics in ITER. Fusion Eng. Des. 2019, 146, 2514–2518. [Google Scholar] [CrossRef]
- Conradie, J.; Swarts, J.C. The relationship between the electrochemical and chemical oxidation of ferrocene-containing carbonyl-phophane-β-diketonato-rhodium(I) complexes—Cytotoxicity of [Rh(FcCOCHCOPh)(CO)(PPh3)]. Eur. J. Inorg. Chem. 2011, 2011, 2439–2449. [Google Scholar] [CrossRef]
- Leipoldt, J.G.; Grobler, E.C. Kinetics of the substitution of the β-diketonato Ligand in β-diketonatocyclo-octadienerhodium(I) complexes by phenthroline. Transit. Met. Chem. 1986, 11, 110–112. [Google Scholar] [CrossRef]
- Jones, J.H. The CativaTM Process for the Manufacture of Acetic Acid: Iridium catalyst improves productivity in an established industrial process. Platin. Met. Rev. 2000, 44, 94–105. [Google Scholar] [CrossRef]
- Graham, D.E.; Lamprecht, G.J.; Potgieter, I.M.; Roodt, A.; Leipoldt, J.G. Observed trans influence of donor atoms in monocharged bidentate ligands: Crystal structure of the acetone solvate of 2-carboxyquinolinatocarbonyltriphenylphosphinerhodium(I). Transit. Met. Chem. 1991, 16, 193–195. [Google Scholar] [CrossRef]
- Simanko, W.; Mereiter, K.; Schmid, R.; Kirchner, K.; Trzeciak, A.M.; Ziołkowski, J.J. Rh(acac)(CO)(PR3) and Rh(oxinate)(CO)(PR3) complexes—Substitution chemistry and structural aspects. J. Organomet. Chem. 2000, 602, 59–64. [Google Scholar] [CrossRef]
- Conradie, J.; Cameron, T.S.; Aquino, M.A.; Lamprecht, G.J.; Swarts, J.C. Synthetic, electrochemical and structural aspects of a series of ferrocene-containing dicarbonyl β-diketonato rhodium(I) complexes. Inorg. Chim. Acta 2005, 358, 2530–2542. [Google Scholar] [CrossRef]
- Hill, M.G.; Lamanna, W.M.; Mann, K.R. Tetrabutylammonium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as a Noncoordinating Electrolyte: Reversible 1e− Oxidations of Ruthenocene, Osmocene, and Rh2(TM4)42+ (TM4=2,5-Diisocyano-2,5-dimethylhexane). Inorg. Chem. 1991, 30, 4687–4690. [Google Scholar] [CrossRef]
- LeSuer, R.J.; Buttolph, C.; Geiger, W.E. Comparison of the conductivity properties of the tetrabutylammonium salt of tetrakis(pentafluorophenyl)borate anion with those of traditional supporting electrolyte anions in nonaqueous solvents. Anal. Chem. 2004, 76, 6395–6401. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, A.; Schaarschmidt, D.; Claus, R.; Lang, H. Influence of electron delocalization in heterocyclic core systems on the electrochemical communication in 2,5-di- and 2,3,4,5-tetraferrocenyl thiophenes, furans, and pyroles. Inorg. Chem. 2011, 50, 10623–10632. [Google Scholar] [CrossRef]
- Diallo, A.K.; Daran, J.-C.; Varret, F.; Ruiz, J.; Astruc, D. How do redox groups behave around a rigid molecular platform? Hexa(ferrocenylethynel)benzenes and their “electrostatic” redox chemistry. Angew. Chem. Int. Ed. 2009, 48, 3141–3145. [Google Scholar] [CrossRef]
- Astruc, D. Why is Ferrocene so Exceptional? Eur. J. Inorg. Chem. 2017, 2017, 6–29. [Google Scholar] [CrossRef]
- Fourie, E.; Erasmus, E.; Swarts, J.C.; Jakob, A.; Lang, H.; Joone, G.K.; Van Rensburg, C.E.J. Cytotoxicity of ferrocenyl-ethynyl phosphine metal complexes of gold and platinum. Anticancer Res. 2011, 31, 825–829. [Google Scholar]
- Blackie, M.A.L.; Chibale, K. Metallocene Antimalarials: The Continuing Quest. Met. Based Drugs 2008, 2008, 495123. [Google Scholar] [CrossRef]
- Atkinson, R.C.J.; Gibson, V.C.; Long, N.J. The syntheses and catalytic applications of unsymmetrical ferroceneligands. Chem. Soc. Rev. 2004, 33, 313–328. [Google Scholar] [CrossRef]
- Mino, T.; Segawa, H.; Yamashita, M. Palladium-catalyzed asymmetric allylic alkylation using chiral hydrazone ligands with ferrocene skeleton. J. Organomet. Chem. 2004, 689, 2833–2836. [Google Scholar] [CrossRef]
- Garabatos-Perera, J.R.; Butenschön, H. New chiral ferrocenyloxazolines: The first planar chiral triferrocenylmethane derivative and its use in asymmetric catalysis. J. Organomet. Chem. 2009, 694, 2047–2052. [Google Scholar] [CrossRef]
- Gross, A.; Hüsken, N.; Schur, J.; Raszeja, L.; Ott, I.; Metzler-Nolte, N. A Ruthenocene–PNA Bioconjugate—Synthesis, Characterization, Cytotoxicity, and AAS-Detected Cellular Uptake. Bioconjugate Chem. 2012, 23, 1764–1774. [Google Scholar] [CrossRef] [PubMed]
- Khobragade, D.A.; Mahamulkar, S.G.; Pospíšil, L.; Císařová, I.; Rulíšek, L.; Jahn, U. Acceptor-Substituted Ferrocenium Salts as Strong, Single-Electron Oxidants: Synthesis, Electrochemistry, Theoretical Investigations, and Initial Synthetic Application. Chem. Eur. J. 2012, 18, 12267–12277. [Google Scholar] [CrossRef] [PubMed]
- Milde, B.; Lohan, M.; Schreiner, C.; Rüffer, T.; Lang, H. (Metallocenylphosphane)palladium Dichlorides—Synthesis, Electrochemistry and Their Application in C-C Coupling Reactions. Eur. J. Inorg. Chem. 2011, 2011, 5437–5449. [Google Scholar] [CrossRef]
- Gusev, O.V.; Kalsin, A.M.; Petrovskii, P.V.; Lyssenko, K.A.; Oprunenko, Y.F.; Bianchini, C.; Meli, A.; Oberhauser, W. Synthesis, Characterization, and Reactivity of 1,1‘-Bis(diphenylphosphino)osmocene: Palladium(II) Complexes and Their Use as Catalysts in the Methoxycarbonylation of Olefins. Organometallics 2003, 22, 913–915. [Google Scholar] [CrossRef]
- Rudie, A.W.; Lichtenberg, D.W.; Katcher, M.L.; Davison, A. Comparative study of 1,1’-bis(diphenylphosphino)cobaltocinium hexafluorophosphate and 1,1’-bis(diphenylphosphino)ferrocene as bidentate ligands. Inorg. Chem. 1978, 17, 2859–2863. [Google Scholar] [CrossRef]
- Erasmus, J.J.C.; Lamprecht, G.J.; Swarts, J.C.; Roodt, A.; Oskarsson, Å. (E)-1,3-Diferrocenyl-2-buten-1-one-Water (4/1). Acta Crystallogr. 1996, C52, 3000–3002. [Google Scholar] [CrossRef]
- Trupia, S.; Nafady, A.; Geiger, W.E. Electrochemical preparation of the bis(ruthenocenium) dication. Inorg. Chem. 2003, 42, 5480–5482. [Google Scholar] [CrossRef]
- Droege, M.W.; Harman, W.D.; Taube, H. Higher oxidation state chemistry of osmocene: Dimeric nature of the osmocenium ion. Inorg. Chem. 1987, 26, 1309–1315. [Google Scholar] [CrossRef]
- Ramollo, G.K.; López-Gómez, M.J.; Liles, D.C.; Matsinha, L.C.; Smith, G.S.; Bezuidenhout, D.I. Rhodium(I) Ferrocenylcarbene Complexes: Synthesis, Structural Determination, Electrochemistry, and Application as Hydroformylation Catalyst Precursors. Organometallics 2015, 34, 5745–5753. [Google Scholar] [CrossRef]
- Weber, B.; Serafin, A.; Michie, J.; van Rensburg, C.E.J.; Swarts, J.C.; Bohm, L. Cytotoxicity and Cell Death Pathways Invoked by Two New Rhodium-Ferrocene Complexes in Benign and Malignant Prostatic Cell Lines. Anticancer Res. 2004, 24, 763–770. [Google Scholar] [PubMed]
- Chatt, J.; Venanzi, L.M. 955. Olefin co-ordination compounds. Part VI. Diene complexes of rhodium(I). J. Chem. Soc. (Resumed) 1957, 4735–4741. [Google Scholar] [CrossRef]
- Weinmayr, V. Ferrocenoylacetone (Acetoacetylferrocene). Naturwissenschaften 1958, 45, 311. [Google Scholar] [CrossRef]
- Mahrholdt, J.; Rüffer, T.; Lang, H. Synthesis and Electrochemical Studies of Ruthenium(II) Dicarbonyl Bis(ferrocenyl-β-diketonates). Z. Anorg. Allg. Chem. 2020, 646, 1634–1640. [Google Scholar] [CrossRef]
- Kemp, K.C.; Fourie, E.; Conradie, J.; Swarts, J.C. Ruthenocene-containing betadiketones: Synthesis, pKa/ values, keto-enol isomerisation kinetics and electrochemical aspects. Organometallics 2008, 27, 353–362. [Google Scholar] [CrossRef]
- Fourie, E. A Structural Electrochemical and Kinetic Investigation of Fluorinated and Metallocene-Containing Phosphines and Their Rhodium Complexes. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2008. [Google Scholar]
- Rausch, M.D.; Fischer, E.O.; Grubert, H. The Aromatic Reactivity of Ferrocene, Ruthenocene and Osmocene. J. Am. Chem. Soc. 1960, 82, 76–82. [Google Scholar] [CrossRef]
- Noviandri, I.; Brown, K.N.; Fleming, D.S.; Gulyas, P.T.; Lay, P.A.; Masters, A.F.; Phillips, L. The Decamethylferrocenium/Decamethylferrocene Redox Couple: A Superior Redox Standard to the Ferrocenium/Ferrocene Redox Couple for Studying Solvent Effects on the Thermodynamics of Electron Transfer. J. Phys. Chem. B 1999, 103, 6713–6722. [Google Scholar] [CrossRef]
- Aranzaes, J.R.; Daniel, M.-C.; Astruc, D. Metallocenes as references for the determination of redox potentials by cyclic voltammetry—Permethylated iron and cobalt sandwich complexes, inhibition by polyamine dendrimers, and the role of hydroxy-containing ferrocenes. Can. J. Chem. 2006, 84, 288–299. [Google Scholar] [CrossRef]
- Van Rensburg, C.E.J.; Joone, G.K.; O’Sullivan, J.F. Tetramethylpiperidine-substitution increases the antitumor activity of the aminophenazines for an acquired multidrugresistant cell line. Anticancer Drug Design 2000, 15, 303–306. [Google Scholar]
Comp.; R | Wave | Epa (mV) | Eo’ (Eo’wave 2) b (mV) | ∆Ep (mV) | ipa (μA) | ipc/ipa | Wave | Epa (mV) | Eo′ (mV) | ∆Ep (mV) | ipa (μA) | ipc/ipa |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10; R = CF3 | 1, Fc0/+ | 371 | 328 (ca. 398) | 84 | 3.91 | 0.99 | - | - | - | - | - | - |
11; R = Fc | 1, Fc0/+ | 193 | 156 (–) | 75 | 4.44 | 0.98 | 3, Fc0/+ | 337 | 295 | 84 | 2.28 | 0.98 |
12; R = Rc | 1, Fc0/+ | 206 | 159 (ca. 233) | 82 | 4.00 | 0.97 | 3, Rc0/+ | 751 | - | - | 1.94 | - |
13, R = Oc | 1, Fc0/+ | 201 | 171 (ca. 255) | 60 | 3.89 | 0.96 | 3, Oc0/+ | 640 | - | - | 2.05 | - |
Compound | Rh(I), υ(CO)/cm−1 | Applied E/V vs. Ag(m) | Rh(II), υ(CO)/cm−1 | ||
---|---|---|---|---|---|
A1 | B1 | A2 | B2 | ||
13: [Rh(FcCOCHCOCOc)(CO)2] | 2079 | 2010 | 1.05 | 2089 | 2037 |
12: [Rh(FcCOCHCOCRc)(CO)2] | 2086 | 2021 | 1.00 | 2098 | 2037 |
11: [Rh(FcCOCHCOCFc)(CO)2] | 2077 | 2008 | 0.80 | 2094 | 2040 |
10: [Rh(FcCOCHCOCCF3)(CO)2] | 2079 | 2008 | 0.80 | 2090 | 2036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fourie, E.; Niemantsverdriet, J.W.; Swarts, J.C. Synthesis Comparative Electrochemistry and Spectroelectrochemistry of Metallocenyl β-Diketonato Dicarbonyl Complexes of Rhodium(I)—Cytotoxicity of [Rh(FcCOCHCOCF3)(CO)2]. Inorganics 2024, 12, 321. https://doi.org/10.3390/inorganics12120321
Fourie E, Niemantsverdriet JW, Swarts JC. Synthesis Comparative Electrochemistry and Spectroelectrochemistry of Metallocenyl β-Diketonato Dicarbonyl Complexes of Rhodium(I)—Cytotoxicity of [Rh(FcCOCHCOCF3)(CO)2]. Inorganics. 2024; 12(12):321. https://doi.org/10.3390/inorganics12120321
Chicago/Turabian StyleFourie, Eleanor, J. W. (Hans) Niemantsverdriet, and Jannie C. Swarts. 2024. "Synthesis Comparative Electrochemistry and Spectroelectrochemistry of Metallocenyl β-Diketonato Dicarbonyl Complexes of Rhodium(I)—Cytotoxicity of [Rh(FcCOCHCOCF3)(CO)2]" Inorganics 12, no. 12: 321. https://doi.org/10.3390/inorganics12120321
APA StyleFourie, E., Niemantsverdriet, J. W., & Swarts, J. C. (2024). Synthesis Comparative Electrochemistry and Spectroelectrochemistry of Metallocenyl β-Diketonato Dicarbonyl Complexes of Rhodium(I)—Cytotoxicity of [Rh(FcCOCHCOCF3)(CO)2]. Inorganics, 12(12), 321. https://doi.org/10.3390/inorganics12120321