Synthesis Comparative Electrochemistry and Spectroelectrochemistry of Metallocenyl β-Diketonato Dicarbonyl Complexes of Rhodium(I)—Cytotoxicity of [Rh(FcCOCHCOCF3)(CO)2]
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Electrochemistry
2.3. Spectroelectrochemistry
2.4. Cytotoxicity of 10
3. Materials and Methods
3.1. General Information
3.2. Synthesis of New Complexes
3.2.1. 1–Ferrocenyl–3–osmocenylpropane–1,3–dione, FcCOCH2COOc, 5
3.2.2. [Rh(β-diketonato)(cod)] and [Rh(β-diketonato)(CO)2] Complexes
[Rh(FcCOCHCORc)(cod)] 8 and [Rh(FcCOCHCOOc)(cod)] 9
[Rh Rh(FcCOCHCORc)(CO)2] 12 and [Rh(FcCOCHCOOc)(CO)2] 13
3.3. Electrochemistry
3.4. Spectroelectrochemistry
3.5. Cytotoxic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ohata, J.; Ball, Z.T. Rhodium at the Chemistry-Biology Interface. Dalton Trans. 2018, 47, 14855–14860. [Google Scholar] [CrossRef] [PubMed]
- Maitlis, P.M.; Haynes, A.; Sunley, G.J.; Howard, M.J. Methanol carbonylation revisited: Thirty years on. J. Chem. Soc. Dalton Trans. 1996, 2187–2196. [Google Scholar] [CrossRef]
- Van den Berg, M.; Minnaard, A.J.; Haak, R.M.; Leeman, M.; Schudde, E.P.; Meetsma, A.; Feringa, B.L.; De Vries, A.H.M.; Maljaars, C.E.P.; Willans, C.E.; et al. Monodentate Phosphoramidites: A Breakthrough in Rhodium-Catalysed Asymmetric Hydrogenation of Olefins. Adv. Synth. Catal. 2003, 345, 308–323. [Google Scholar] [CrossRef]
- Pedrós, M.G.; Masdeu-Bultó, A.M.; Bayardon, J.; Sinou, D. Hydroformylation of alkenes with rhodium catalyst in supercritical carbon dioxide. Catal. Lett. 2006, 107, 205–208. [Google Scholar] [CrossRef]
- Mertens, P.; Boman, R.; Dickheuer, S.; Krasikov, Y.; Krimmer, A.; Leichtle, D.; Liegeois, B.; Linsmeier, C.; Litnovsky, A.; Marchuk, O.; et al. On the use of rhodium mirrors for optical diagnostics in ITER. Fusion Eng. Des. 2019, 146, 2514–2518. [Google Scholar] [CrossRef]
- Conradie, J.; Swarts, J.C. The relationship between the electrochemical and chemical oxidation of ferrocene-containing carbonyl-phophane-β-diketonato-rhodium(I) complexes—Cytotoxicity of [Rh(FcCOCHCOPh)(CO)(PPh3)]. Eur. J. Inorg. Chem. 2011, 2011, 2439–2449. [Google Scholar] [CrossRef]
- Leipoldt, J.G.; Grobler, E.C. Kinetics of the substitution of the β-diketonato Ligand in β-diketonatocyclo-octadienerhodium(I) complexes by phenthroline. Transit. Met. Chem. 1986, 11, 110–112. [Google Scholar] [CrossRef]
- Jones, J.H. The CativaTM Process for the Manufacture of Acetic Acid: Iridium catalyst improves productivity in an established industrial process. Platin. Met. Rev. 2000, 44, 94–105. [Google Scholar] [CrossRef]
- Graham, D.E.; Lamprecht, G.J.; Potgieter, I.M.; Roodt, A.; Leipoldt, J.G. Observed trans influence of donor atoms in monocharged bidentate ligands: Crystal structure of the acetone solvate of 2-carboxyquinolinatocarbonyltriphenylphosphinerhodium(I). Transit. Met. Chem. 1991, 16, 193–195. [Google Scholar] [CrossRef]
- Simanko, W.; Mereiter, K.; Schmid, R.; Kirchner, K.; Trzeciak, A.M.; Ziołkowski, J.J. Rh(acac)(CO)(PR3) and Rh(oxinate)(CO)(PR3) complexes—Substitution chemistry and structural aspects. J. Organomet. Chem. 2000, 602, 59–64. [Google Scholar] [CrossRef]
- Conradie, J.; Cameron, T.S.; Aquino, M.A.; Lamprecht, G.J.; Swarts, J.C. Synthetic, electrochemical and structural aspects of a series of ferrocene-containing dicarbonyl β-diketonato rhodium(I) complexes. Inorg. Chim. Acta 2005, 358, 2530–2542. [Google Scholar] [CrossRef]
- Hill, M.G.; Lamanna, W.M.; Mann, K.R. Tetrabutylammonium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as a Noncoordinating Electrolyte: Reversible 1e− Oxidations of Ruthenocene, Osmocene, and Rh2(TM4)42+ (TM4=2,5-Diisocyano-2,5-dimethylhexane). Inorg. Chem. 1991, 30, 4687–4690. [Google Scholar] [CrossRef]
- LeSuer, R.J.; Buttolph, C.; Geiger, W.E. Comparison of the conductivity properties of the tetrabutylammonium salt of tetrakis(pentafluorophenyl)borate anion with those of traditional supporting electrolyte anions in nonaqueous solvents. Anal. Chem. 2004, 76, 6395–6401. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, A.; Schaarschmidt, D.; Claus, R.; Lang, H. Influence of electron delocalization in heterocyclic core systems on the electrochemical communication in 2,5-di- and 2,3,4,5-tetraferrocenyl thiophenes, furans, and pyroles. Inorg. Chem. 2011, 50, 10623–10632. [Google Scholar] [CrossRef]
- Diallo, A.K.; Daran, J.-C.; Varret, F.; Ruiz, J.; Astruc, D. How do redox groups behave around a rigid molecular platform? Hexa(ferrocenylethynel)benzenes and their “electrostatic” redox chemistry. Angew. Chem. Int. Ed. 2009, 48, 3141–3145. [Google Scholar] [CrossRef]
- Astruc, D. Why is Ferrocene so Exceptional? Eur. J. Inorg. Chem. 2017, 2017, 6–29. [Google Scholar] [CrossRef]
- Fourie, E.; Erasmus, E.; Swarts, J.C.; Jakob, A.; Lang, H.; Joone, G.K.; Van Rensburg, C.E.J. Cytotoxicity of ferrocenyl-ethynyl phosphine metal complexes of gold and platinum. Anticancer Res. 2011, 31, 825–829. [Google Scholar]
- Blackie, M.A.L.; Chibale, K. Metallocene Antimalarials: The Continuing Quest. Met. Based Drugs 2008, 2008, 495123. [Google Scholar] [CrossRef]
- Atkinson, R.C.J.; Gibson, V.C.; Long, N.J. The syntheses and catalytic applications of unsymmetrical ferroceneligands. Chem. Soc. Rev. 2004, 33, 313–328. [Google Scholar] [CrossRef]
- Mino, T.; Segawa, H.; Yamashita, M. Palladium-catalyzed asymmetric allylic alkylation using chiral hydrazone ligands with ferrocene skeleton. J. Organomet. Chem. 2004, 689, 2833–2836. [Google Scholar] [CrossRef]
- Garabatos-Perera, J.R.; Butenschön, H. New chiral ferrocenyloxazolines: The first planar chiral triferrocenylmethane derivative and its use in asymmetric catalysis. J. Organomet. Chem. 2009, 694, 2047–2052. [Google Scholar] [CrossRef]
- Gross, A.; Hüsken, N.; Schur, J.; Raszeja, L.; Ott, I.; Metzler-Nolte, N. A Ruthenocene–PNA Bioconjugate—Synthesis, Characterization, Cytotoxicity, and AAS-Detected Cellular Uptake. Bioconjugate Chem. 2012, 23, 1764–1774. [Google Scholar] [CrossRef] [PubMed]
- Khobragade, D.A.; Mahamulkar, S.G.; Pospíšil, L.; Císařová, I.; Rulíšek, L.; Jahn, U. Acceptor-Substituted Ferrocenium Salts as Strong, Single-Electron Oxidants: Synthesis, Electrochemistry, Theoretical Investigations, and Initial Synthetic Application. Chem. Eur. J. 2012, 18, 12267–12277. [Google Scholar] [CrossRef] [PubMed]
- Milde, B.; Lohan, M.; Schreiner, C.; Rüffer, T.; Lang, H. (Metallocenylphosphane)palladium Dichlorides—Synthesis, Electrochemistry and Their Application in C-C Coupling Reactions. Eur. J. Inorg. Chem. 2011, 2011, 5437–5449. [Google Scholar] [CrossRef]
- Gusev, O.V.; Kalsin, A.M.; Petrovskii, P.V.; Lyssenko, K.A.; Oprunenko, Y.F.; Bianchini, C.; Meli, A.; Oberhauser, W. Synthesis, Characterization, and Reactivity of 1,1‘-Bis(diphenylphosphino)osmocene: Palladium(II) Complexes and Their Use as Catalysts in the Methoxycarbonylation of Olefins. Organometallics 2003, 22, 913–915. [Google Scholar] [CrossRef]
- Rudie, A.W.; Lichtenberg, D.W.; Katcher, M.L.; Davison, A. Comparative study of 1,1’-bis(diphenylphosphino)cobaltocinium hexafluorophosphate and 1,1’-bis(diphenylphosphino)ferrocene as bidentate ligands. Inorg. Chem. 1978, 17, 2859–2863. [Google Scholar] [CrossRef]
- Erasmus, J.J.C.; Lamprecht, G.J.; Swarts, J.C.; Roodt, A.; Oskarsson, Å. (E)-1,3-Diferrocenyl-2-buten-1-one-Water (4/1). Acta Crystallogr. 1996, C52, 3000–3002. [Google Scholar] [CrossRef]
- Trupia, S.; Nafady, A.; Geiger, W.E. Electrochemical preparation of the bis(ruthenocenium) dication. Inorg. Chem. 2003, 42, 5480–5482. [Google Scholar] [CrossRef]
- Droege, M.W.; Harman, W.D.; Taube, H. Higher oxidation state chemistry of osmocene: Dimeric nature of the osmocenium ion. Inorg. Chem. 1987, 26, 1309–1315. [Google Scholar] [CrossRef]
- Ramollo, G.K.; López-Gómez, M.J.; Liles, D.C.; Matsinha, L.C.; Smith, G.S.; Bezuidenhout, D.I. Rhodium(I) Ferrocenylcarbene Complexes: Synthesis, Structural Determination, Electrochemistry, and Application as Hydroformylation Catalyst Precursors. Organometallics 2015, 34, 5745–5753. [Google Scholar] [CrossRef]
- Weber, B.; Serafin, A.; Michie, J.; van Rensburg, C.E.J.; Swarts, J.C.; Bohm, L. Cytotoxicity and Cell Death Pathways Invoked by Two New Rhodium-Ferrocene Complexes in Benign and Malignant Prostatic Cell Lines. Anticancer Res. 2004, 24, 763–770. [Google Scholar] [PubMed]
- Chatt, J.; Venanzi, L.M. 955. Olefin co-ordination compounds. Part VI. Diene complexes of rhodium(I). J. Chem. Soc. (Resumed) 1957, 4735–4741. [Google Scholar] [CrossRef]
- Weinmayr, V. Ferrocenoylacetone (Acetoacetylferrocene). Naturwissenschaften 1958, 45, 311. [Google Scholar] [CrossRef]
- Mahrholdt, J.; Rüffer, T.; Lang, H. Synthesis and Electrochemical Studies of Ruthenium(II) Dicarbonyl Bis(ferrocenyl-β-diketonates). Z. Anorg. Allg. Chem. 2020, 646, 1634–1640. [Google Scholar] [CrossRef]
- Kemp, K.C.; Fourie, E.; Conradie, J.; Swarts, J.C. Ruthenocene-containing betadiketones: Synthesis, pKa/ values, keto-enol isomerisation kinetics and electrochemical aspects. Organometallics 2008, 27, 353–362. [Google Scholar] [CrossRef]
- Fourie, E. A Structural Electrochemical and Kinetic Investigation of Fluorinated and Metallocene-Containing Phosphines and Their Rhodium Complexes. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2008. [Google Scholar]
- Rausch, M.D.; Fischer, E.O.; Grubert, H. The Aromatic Reactivity of Ferrocene, Ruthenocene and Osmocene. J. Am. Chem. Soc. 1960, 82, 76–82. [Google Scholar] [CrossRef]
- Noviandri, I.; Brown, K.N.; Fleming, D.S.; Gulyas, P.T.; Lay, P.A.; Masters, A.F.; Phillips, L. The Decamethylferrocenium/Decamethylferrocene Redox Couple: A Superior Redox Standard to the Ferrocenium/Ferrocene Redox Couple for Studying Solvent Effects on the Thermodynamics of Electron Transfer. J. Phys. Chem. B 1999, 103, 6713–6722. [Google Scholar] [CrossRef]
- Aranzaes, J.R.; Daniel, M.-C.; Astruc, D. Metallocenes as references for the determination of redox potentials by cyclic voltammetry—Permethylated iron and cobalt sandwich complexes, inhibition by polyamine dendrimers, and the role of hydroxy-containing ferrocenes. Can. J. Chem. 2006, 84, 288–299. [Google Scholar] [CrossRef]
- Van Rensburg, C.E.J.; Joone, G.K.; O’Sullivan, J.F. Tetramethylpiperidine-substitution increases the antitumor activity of the aminophenazines for an acquired multidrugresistant cell line. Anticancer Drug Design 2000, 15, 303–306. [Google Scholar]
Comp.; R | Wave | Epa (mV) | Eo’ (Eo’wave 2) b (mV) | ∆Ep (mV) | ipa (μA) | ipc/ipa | Wave | Epa (mV) | Eo′ (mV) | ∆Ep (mV) | ipa (μA) | ipc/ipa |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10; R = CF3 | 1, Fc0/+ | 371 | 328 (ca. 398) | 84 | 3.91 | 0.99 | - | - | - | - | - | - |
11; R = Fc | 1, Fc0/+ | 193 | 156 (–) | 75 | 4.44 | 0.98 | 3, Fc0/+ | 337 | 295 | 84 | 2.28 | 0.98 |
12; R = Rc | 1, Fc0/+ | 206 | 159 (ca. 233) | 82 | 4.00 | 0.97 | 3, Rc0/+ | 751 | - | - | 1.94 | - |
13, R = Oc | 1, Fc0/+ | 201 | 171 (ca. 255) | 60 | 3.89 | 0.96 | 3, Oc0/+ | 640 | - | - | 2.05 | - |
Compound | Rh(I), υ(CO)/cm−1 | Applied E/V vs. Ag(m) | Rh(II), υ(CO)/cm−1 | ||
---|---|---|---|---|---|
A1 | B1 | A2 | B2 | ||
13: [Rh(FcCOCHCOCOc)(CO)2] | 2079 | 2010 | 1.05 | 2089 | 2037 |
12: [Rh(FcCOCHCOCRc)(CO)2] | 2086 | 2021 | 1.00 | 2098 | 2037 |
11: [Rh(FcCOCHCOCFc)(CO)2] | 2077 | 2008 | 0.80 | 2094 | 2040 |
10: [Rh(FcCOCHCOCCF3)(CO)2] | 2079 | 2008 | 0.80 | 2090 | 2036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fourie, E.; Niemantsverdriet, J.W.; Swarts, J.C. Synthesis Comparative Electrochemistry and Spectroelectrochemistry of Metallocenyl β-Diketonato Dicarbonyl Complexes of Rhodium(I)—Cytotoxicity of [Rh(FcCOCHCOCF3)(CO)2]. Inorganics 2024, 12, 321. https://doi.org/10.3390/inorganics12120321
Fourie E, Niemantsverdriet JW, Swarts JC. Synthesis Comparative Electrochemistry and Spectroelectrochemistry of Metallocenyl β-Diketonato Dicarbonyl Complexes of Rhodium(I)—Cytotoxicity of [Rh(FcCOCHCOCF3)(CO)2]. Inorganics. 2024; 12(12):321. https://doi.org/10.3390/inorganics12120321
Chicago/Turabian StyleFourie, Eleanor, J. W. (Hans) Niemantsverdriet, and Jannie C. Swarts. 2024. "Synthesis Comparative Electrochemistry and Spectroelectrochemistry of Metallocenyl β-Diketonato Dicarbonyl Complexes of Rhodium(I)—Cytotoxicity of [Rh(FcCOCHCOCF3)(CO)2]" Inorganics 12, no. 12: 321. https://doi.org/10.3390/inorganics12120321
APA StyleFourie, E., Niemantsverdriet, J. W., & Swarts, J. C. (2024). Synthesis Comparative Electrochemistry and Spectroelectrochemistry of Metallocenyl β-Diketonato Dicarbonyl Complexes of Rhodium(I)—Cytotoxicity of [Rh(FcCOCHCOCF3)(CO)2]. Inorganics, 12(12), 321. https://doi.org/10.3390/inorganics12120321