Coordination Modes of Para-Substituted Benzoates Towards Divalent Copper Centers in the Presence of Diimines
Abstract
1. Introduction
2. Experimental
2.1. X-Ray Crystallographic Data Details
2.2. Synthesis of the Complexes
3. Results and Discussion
3.1. Infrared Spectroscopy
3.2. UV–Visible Spectroscopy
3.3. Description of the Structures
3.4. Overall Results
4. Materials and Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, K.; Mathivathanan, L.; Herchel, R.; Boudalis, A.K.; Raptis, R.G. Supramolecular Assemblies of Trinuclear Copper(II)-Pyrazolato Units: A Structural, Magnetic and EPR Study. Chemistry 2020, 2, 626–644. [Google Scholar] [CrossRef]
- Rocco, D.; Novak, S.; Prescimone, A.; Constable, E.C.; Housecroft, C.E. Manipulating the Conformation of 3,2′:6′,3″-Terpyridine in [Cu2(μ-OAc)4(3,2′:6′,3″-tpy)]n 1D-Polymers. Chemistry 2021, 3, 182–198. [Google Scholar] [CrossRef]
- Bilyachenko, A.N.; Khrustalev, V.N.; Gutsul, E.I.; Zueva, A.Y.; Korlyukov, A.A.; Shul’pina, L.S.; Ikonnikov, N.S.; Dorovatovskii, P.V.; Gelman, D.; Shubina, E.S.; et al. Hybrid Silsesquioxane/Benzoate Cu7-Complexes: Synthesis, Unique Cage Structure, and Catalytic Activity. Molecules 2022, 27, 8505. [Google Scholar] [CrossRef] [PubMed]
- Shaban, S.Y.; Ramadan, A.E.-M.A.; Ibrahim, M.M.; Elshami, F.I.; Eldik, R. Square planar versus square pyramidal copper(II) complexes containing N3O moiety: Synthesis, structural characterization, kinetic and catalytic mimicking activity. Inorg. Chim. Acta. 2019, 486, 608–616. [Google Scholar] [CrossRef]
- Andrejević, T.P.; Aleksic, I.; Počkaj, M.; Kljun, J.; Milivojevic, D.; Stevanović, N.L.; Nikodinovic-Runic, J.; Turel, I.; Djuran, M.I.; Glišić, B.D. Tailoring copper(ii) complexes with pyridine-4,5-dicarboxylate esters for anti-Candida activity. J. Chem. Soc. Dalton Trans. 2021, 50, 2627–2638. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tang, R.; Wan, C.; Qin, Z.; Chen, S.; Xu, K. Two novel metal complexes based on 2,2′-bipyridine and 2,4-dihydroxybenzoic acid: Synthesis, crystal structure and catalytic performance. J. Mol. Struct. 2023, 1291, 136066. [Google Scholar] [CrossRef]
- Massoud, S.S.; Louka, F.R.; Dial, M.T.; Salem, N.N.M.H.; Fischer, R.C.; Torvisco, A.; Mautner, F.A.; Nakashima, K.; Handa, M.; Mikuriya, M. Magnetostructural Properties of Some Doubly-Bridged Phenoxido Copper(II) Complexes. Molecules 2023, 28, 2648–2667. [Google Scholar] [CrossRef]
- Maldonado, N.; Perles, J.; Martínez, J.I.; Gómez-García, C.J.; Marcos, M.L.; Amo-Ochoa, P. Experimental and Theoretical Study of Dynamic Structural Transformations between Sensing Copper(II)-Uracil Antiferromagnetic and Metamagnetic Coordination Compounds. Cryst. Growth Des. 2020, 20, 5097–5107. [Google Scholar] [CrossRef]
- Toader, A.M.; Buta, M.C.; Cimpoesu, F.; Toma, A.-I.; Zalaru, C.M.; Cinteza, L.O.; Ferbinteanu, M. New Syntheses, Analytic Spin Hamiltonians, Structural and Computational Characterization for a Series of Tri-, Hexa- and Hepta-Nuclear Copper (II) Complexes with Prototypic Patterns. Chemistry 2021, 3, 411–439. [Google Scholar] [CrossRef]
- Faber, S.L.; Dilmen, N.I.; Becker, S. On the Redox Equilibrium of TPP/TPPO Containing Cu(I) and Cu(II) Complexes. Chemistry 2023, 5, 1288–1301. [Google Scholar] [CrossRef]
- Rigamonti, L.; Carlino, S.; Halibi, Y.; Demartin, F.; Castellano, C.; Ponti, A.; Pievo, R.; Pasini, A. Copper 1D coordination polymers and dimers: Role of the carboxylate and the ammonium cation, crystal structures and magnetic studies. Polyhedron 2013, 53, 157–165. [Google Scholar] [CrossRef]
- Sk, S.; Biswas, S.; Dutt, N.; Das, A.; Suryadevara, N.; Vijaykumar, G.; Bhunia, P.; Ruben, M.; Mandal, S.; Bera, M. Structures and Properties of a Series of High-Spin [CoII2] Complexes Supported by Ancillary Benzoate, Ortho-Hydroxybenzoate, and Para-Hydroxybenzoate Ligands. Cryst. Growth Des. 2023, 23, 5925–5940. [Google Scholar] [CrossRef]
- Sánchez-Férez, F.; Pou, R.; Bayés-García, L.; Font-Bardia, M.; Pons, J.; Ayllón, J.A. Benzoate substituents effects on the structure of Zn(II) complexes and 1D 4,4′-bipyridine derived coordination polymers. Inorg. Chim. Acta 2020, 500, 119218. [Google Scholar] [CrossRef]
- Ayllón, J.A.; Vallcorba, O.; Domingo, C. Solvent Influence in the Synthesis of Lead(II) Complexes Containing Benzoate Derivatives. Inorganics 2024, 12, 24. [Google Scholar] [CrossRef]
- Eom, G.H.; Park, H.M.; Hyun, M.Y.; Jang, S.P.; Kim, C.; Lee, J.H.; Lee, S.J.; Kim, S.J.; Kim, Y. Anion effects on the crystal structures of ZnII complexes containing 2,2′-bipyridine: Their photoluminescence and catalytic activities. Polyhedron 2011, 30, 1555–1564. [Google Scholar] [CrossRef]
- Katzsch, F.; Münch, A.S.; Mertens, F.O.R.L.; Weber, E. Copper(II) benzoate dimers coordinated by different linear alcohols—A systematic study of crystal structures. J. Mol. Struct. 2014, 1064, 122–129. [Google Scholar] [CrossRef]
- Apex2, Version 2 User Manual; Bruker Analytical X-ray Systems, Inc.: Madison, WI, USA, 2006.
- SADABS: Area–Detector Absorption Correction; Siemens Industrial Automation, Inc.: Alpharette, GA, USA, 1996.
- Palatinus, L.; Chapuis, G. SUPERFLIP—A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Cryst. 2007, 40, 786–790. [Google Scholar] [CrossRef]
- Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K.; Watkin, D.J. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Cryst. 2003, 36, 1487. [Google Scholar] [CrossRef]
- Watkin, D.J.; Prout, C.K.; Pearce, L.J. CAMERON; Chemical Crystallography Laboratory, Oxford University: Oxford, UK, 1996. [Google Scholar]
- Zheng, Y.Q.; Cheng, D.Y.; Liu, B.B.; Huang, W.X. New Cu(ii) complexes based on the hydroxo-bridged dinuclear [Cu(OH)2Cu] units: Step-like di- and trimerizations of [Cu(OH)2Cu] units. Dalton Trans. 2011, 40, 277–286. [Google Scholar] [CrossRef]
- Mihaylov, M.Y.; Zdravkova, V.R.; Ivanova, E.Z.; Aleksandrov, H.A.; Petkov, P.S.; Vayssilov, G.N.; Hadjiivanov, K.I. Infrared spectra of surface nitrates: Revision of the current opinions based on the case study of ceria. J. Catal. 2021, 394, 245–258. [Google Scholar] [CrossRef]
- Altybayeva, D.T.; Tulenbayeva, M.A.; Kamalov, Z.K.; Abdullayeva, M.D.; Akimzhanova, E.A. Synthesis, properties and ir spectra of a complex compound of manganese chloride with hexamethylenetetramine. E3S Web Conf. 2024, 537, 05002. [Google Scholar] [CrossRef]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356. [Google Scholar] [CrossRef]
- Li, Y.-F.; Ghosh, A.; Biswas, P.K.; Saha, S.; Schmittel, M. Exchange Speed of Four-Component Nanorotors Correlates with Hammett Substituent Constants. Chemistry 2021, 3, 116–125. [Google Scholar] [CrossRef]
(a) | |||||
Compound | 1 | 2 | 3 | 4 | 5 |
Chemical formula | C28H16CuN4O4 | C24H18CuI2N2O5 | C26H18CuI2N2O5 | C31H22BrClCuN4O7 | C19H14BrCuN3O6 |
Chemical formula moiety | C28H16CuN4O4 | C24H18CuI2N2O5 | C26H18CuI2N2O5 | C31H20BrCuN4O2, ClO4, H2O | C19H14BrCuN3O6 |
Crystal system | Triclinic | Monoclinic | Triclinic | Triclinic | Monoclinic |
Space group | Pī | P21/c | Pī | Pī | P21/c |
a (Å) | 6.4984 (4) | 13.237 (5) | 8.042 (5) | 11.274 (3) | 8.9881 (7) |
b (Å) | 9.5836 (6) | 16.140 (6) | 10.770 (7) | 16.300 (4) | 14.1521 (10) |
c (Å) | 19.5348 (12) | 12.003 (5) | 15.511 (10) | 17.379 (4) | 14.9097 (10) |
α (°) | 92.924 (3) | 90 | 99.063 (17) | 84.414 (6) | 90 |
β (°) | 94.241 (3) | 103.63 (1) | 94.715 (16) | 83.927 (6) | 97.996 (3) |
γ (°) | 106.537 (2) | 90 | 108.488 (16) | 76.660 (6) | 90 |
V (Å3) | 1159.76 (13) | 2492.3 (16) | 1245.6 (13) | 3081.4 (12) | 1878.1 (2) |
Z | 2 | 4 | 2 | 4 | 4 |
Refinement | |||||
R[F2 > 2σ(F2)] | 0.035 | 0.055 | 0.058 | 0.052 | 0.031 |
wR(F2) | 0.071 | 0.074 | 0.114 | 0.075 | 0.057 |
S | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Reflections used | 3849 | 3743 | 3990 | 7660 | 2686 |
No. of parameters | 334 | 307 | 333 | 809 | 271 |
No. of restraints | 1 | 4 | |||
Δρmax, Δρmin (eÅ−3) | 0.52, −0.39 | 1.12, −0.80 | 1.33, −1.42 | 0.80, −0.54 | 0.36, −0.32 |
(b) | |||||
Compound | 6 | 7 | 8 | 9 | |
Chemical formula | C19H14CuN4O8 | C48H50Cl2Cu2N4O14 | C46H31ClCu2I3N4O10.50 | C30H24Br4Cu2O10 | |
Chemical formula moiety | C19H14CuN4O8 | C48H50Cu2N4O6, 2(ClO4) | 2 (C45H28Cu2I3N4O6), 2(ClO4), C2H6O | C30H24Br4Cu2O10 | |
Crystal system | Triclinic | Triclinic | Triclinic | Triclinic | |
Space group | Pī | Pī | Pī | Pī | |
a (Å) | 7.5991 (16) | 10.698 (3) | 11.295 (6) | 6.5871 (14) | |
b (Å) | 9.195 (2) | 12.332 (4) | 13.485 (7) | 10.966 (3) | |
c (Å) | 14.004 (3) | 20.899 (8) | 16.700 (9) | 12.635 (3) | |
α (°) | 89.094 (7) | 98.004 (11) | 74.63 (2) | 90.03 (1) | |
β (°) | 75.143 (6) | 99.061 (10) | 87.904 (19) | 103.85 (1) | |
γ (°) | 87.963 (7) | 110.58 (1) | 73.551 (19) | 99.931 (10) | |
V (Å3) | 945.2 (4) | 2491.9 (15) | 2350 (2) | 872.1 (4) | |
Z | 2 | 2 | 2 | 1 | |
Refinement | |||||
R[F2 > 2σ(F2)] | 0.047 | 0.048 | 0.043 | 0.043 | |
wR(F2) | 0.108 | 0.111 | 0.056 | 0.055 | |
S | 1.00 | 1.00 | 1.00 | 1.00 | |
Reflections used | 3229 | 6883 | 6186 | 2429 | |
No. of parameters | 289 | 631 | 613 | 208 | |
No. of restraints | 3 | ||||
Δρmax, Δρmin (eÅ−3) | 0.83, −0.70 | 0.39, −1.34 | 0.91, −0.67 | 0.76, −0.52 |
Cu1—O1 | 1.9294 (18) | O1—Cu1—O3 | 96.94 (8) |
Cu1—O3 | 1.9535 (17) | O1—Cu1—N1 | 91.60 (8) |
Cu1—N1 | 2.0050 (19) | O3—Cu1—N1 | 169.08 (8) |
Cu1—N2 | 2.0107 (19) | O1—Cu1—N2 | 164.12 (8) |
Cu1—O2 | 2.791 (3) | O3—Cu1—N2 | 91.27 (8) |
Cu1—O4 | 2.585 (2) | N1—Cu1—N2 | 82.11 (8) |
Cu1—O1 | 1.964 (3) | O1—Cu1—O3 | 99.09 (13) |
Cu1—O3 | 2.208 (3) | O1—Cu1—O5 | 93.61 (13) |
Cu1—O5 | 1.959 (3) | O3—Cu1—O5 | 91.47 (13) |
Cu1—N1 | 2.007 (4) | O1—Cu1—N1 | 161.25 (15) |
Cu1—N2 | 1.997 (4) | O3—Cu1—N1 | 99.05 (14) |
O5—Cu1—N1 | 90.63 (13) | ||
O1—Cu1—N2 | 91.15 (15) | ||
O3—Cu1—N2 | 96.16 (14) | ||
O5—Cu1—N2 | 170.27 (14) | ||
N1—Cu1—N2 | 82.22 (16) |
Cu1—O1 | 1.953 (5) | O1—Cu1—O3 | 98.8 (2) |
Cu1—O3 | 2.299 (5) | O1—Cu1—O5 | 95.2 (2) |
Cu1—O5 | 1.994 (5) | O3—Cu1—O5 | 91.5 (2) |
Cu1—N1 | 2.025 (6) | O1—Cu1—N1 | 166.9 (2) |
Cu1—N2 | 2.016 (6) | O3—Cu1—N1 | 92.3 (2) |
O5—Cu1—N1 | 91.4 (2) | ||
O1—Cu1—N2 | 89.3 (2) | ||
O3—Cu1—N2 | 102.7 (2) | ||
O5—Cu1—N2 | 164.3 (2) | ||
N1—Cu1—N2 | 81.5 (2) |
4a | 4b | ||
---|---|---|---|
Cu1—O1 | 1.979 (3) | Cu2—O3 | 1.948 (3) |
Cu1—O2 | 2.819 (3) | Cu2—O4 | 2.821 (3) |
Cu1—N1 | 2.067 (4) | Cu2—N5 | 2.040 (4) |
Cu1—N2 | 1.983 (3) | Cu2—N6 | 2.021 (3) |
Cu1—N3 | 1.983 (3) | Cu2—N7 | 2.010 (3) |
Cu1—N4 | 2.235 (3) | Cu2—N8 | 2.201 (3) |
O1—Cu1—N1 | 165.41 (13) | O3—Cu2—N5 | 156.55 (12) |
O1—Cu1—N2 | 93.66 (14) | O3—Cu2—N6 | 89.65 (13) |
N1—Cu1—N2 | 80.80 (15) | N5—Cu2—N6 | 80.34 (14) |
O1—Cu1—N3 | 91.02 (13) | O3—Cu2—N7 | 93.46 (12) |
N1—Cu1—N3 | 93.85 (14) | N5—Cu2—N7 | 95.68 (14) |
N2—Cu1—N3 | 174.20 (15) | N6—Cu2—N7 | 175.71 (15) |
O1—Cu1—N4 | 97.01 (13) | O3—Cu2—N8 | 99.65 (12) |
N1—Cu1—N4 | 97.43 (13) | N5—Cu2—N8 | 103.29 (13) |
N2—Cu1—N4 | 104.22 (13) | N6—Cu2—N8 | 103.68 (13) |
N3—Cu1—N4 | 78.56 (13) | N7—Cu2—N8 | 78.72 (13) |
Cu1—O1 | 1.947 (2) | O1—Cu1—O3 | 95.48 (10) |
Cu1—O3 | 1.960 (2) | O1—Cu1—O4 | 90.32 (10) |
Cu1—O4 | 2.376 (3) | O3—Cu1—O4 | 94.77 (10) |
Cu1—N1 | 1.990 (3) | O1—Cu1—N1 | 172.93 (11) |
Cu1—N2 | 2.005 (3) | O3—Cu1—N1 | 91.12 (11) |
O4—Cu1—N1 | 91.65 (10) | ||
O1—Cu1—N2 | 90.44 (10) | ||
O3—Cu1—N2 | 164.15 (11) | ||
O4—Cu1—N2 | 99.89 (10) | ||
N1—Cu1—N2 | 82.53 (11) |
Cu1—O1 | 1.948 (3) | O1—Cu1—O5 | 94.82 (13) |
Cu1—O5 | 1.954 (3) | O1—Cu1—O6 | 100.16 (13) |
Cu1—O6 | 2.319 (3) | O5—Cu1—O6 | 91.08 (14) |
Cu1—N1 | 2.018 (3) | O1—Cu1—N1 | 170.41 (14) |
Cu1—N2 | 2.010 (3) | O5—Cu1—N1 | 91.26 (14) |
O6—Cu1—N1 | 87.10 (14) | ||
O1—Cu1—N2 | 90.02 (13) | ||
O5—Cu1—N2 | 165.43 (13) | ||
O6—Cu1—N2 | 101.60 (14) | ||
N1—Cu1—N2 | 82.34 (14) |
Cu1—Cu2 | 3.0263 (10) | ||
Cu1—O1 | 1.925 (3) | Cu2—O2 | 1.925 (3) |
Cu1—O3 | 1.917 (3) | Cu2—O4 | 1.961 (3) |
Cu1—O6 | 2.188 (3) | Cu2—O5 | 2.272 (3) |
Cu1—N1 | 2.030 (3) | Cu2—N3 | 2.010 (3) |
Cu1—N2 | 2.014 (3) | Cu2—N4 | 2.015 (3) |
O1—Cu1—O3 | 94.20 (12) | O2—Cu2—O4 | 93.92 (12) |
O1—Cu1—O6 | 91.84 (12) | O2—Cu2—O5 | 101.27 (14) |
O3—Cu1—O6 | 92.62 (12) | O4—Cu2—O5 | 88.20 (14) |
O1—Cu1—N1 | 90.97 (13) | O2—Cu2—N3 | 91.73 (13) |
O3—Cu1—N1 | 165.99 (13) | O4—Cu2—N3 | 173.14 (13) |
O6—Cu1—N1 | 100.23 (13) | O5—Cu2—N3 | 94.52 (14) |
O1—Cu1—N2 | 172.40 (13) | O2—Cu2—N4 | 165.91 (14) |
O3—Cu1—N2 | 91.42 (13) | O4—Cu2—N4 | 91.93 (13) |
O6—Cu1—N2 | 93.01 (13) | O5—Cu2—N4 | 91.71 (14) |
N1—Cu1—N2 | 82.42 (14) | N3—Cu2—N4 | 81.71 (14) |
Cu1—O1 | 1.944 (3) | Cu2—O2 | 1.940 (3) |
Cu1—O3 | 1.927 (3) | Cu2—O4 | 2.144 (3) |
Cu1—O5 | 2.260 (3) | Cu2—O5 | 2.036 (3) |
Cu1—N1 | 2.008 (4) | Cu2—O6 | 2.710 (3) |
Cu1—N2 | 2.025 (3) | Cu2—N3 | 2.049 (4) |
O1—Cu1—O3 | 95.31 (14) | O2—Cu2—O4 | 91.51 (14) |
O1—Cu1—O5 | 93.24 (12) | O2—Cu2—O5 | 97.87 (13) |
O3—Cu1—O5 | 97.40 (14) | O4—Cu2—O5 | 97.74 (13) |
O1—Cu1—N1 | 160.93 (13) | O2—Cu2—N3 | 89.68 (14) |
O3—Cu1—N1 | 89.52 (14) | O4—Cu2—N3 | 113.92 (14) |
O5—Cu1—N1 | 104.44 (13) | O5—Cu2—N3 | 147.28 (14) |
O1—Cu1—N2 | 90.02 (13) | O2—Cu2—N4 | 170.33 (14) |
O3—Cu1—N2 | 165.78 (13) | O4—Cu2—N4 | 89.43 (14) |
O5—Cu1—N2 | 95.45 (13) | O5—Cu2—N4 | 91.53 (14) |
N1—Cu1—N2 | 81.37 (14) | N3—Cu2—N4 | 81.15 (14) |
Cu1—O4i | 1.955 (3) | O4i—Cu1—O2i | 90.56 (16) |
Cu1—O2i | 1.942 (3) | O4i—Cu1—Cu1i | 86.64 (10) |
Cu1—Cu1i | 2.5864 (12) | O2i—Cu1—Cu1i | 85.70 (10) |
Cu1—O1 | 1.933 (3) | O4i—Cu1—O1 | 89.43 (16) |
Cu1—O3 | 1.954 (3) | O2i—Cu1—O1 | 168.92 (13) |
Cu1—O5 | 2.145 (3) | Cu1i—Cu1—O1 | 83.24 (10) |
O4i—Cu1—O3 | 168.72 (13) | ||
O2i—Cu1—O3 | 89.22 (15) | ||
Cu1i—Cu1—O3 | 82.10 (10) | ||
O1—Cu1—O3 | 88.64 (15) | ||
O4i—Cu1—O5 | 94.72 (14) | ||
O2i—Cu1—O5 | 95.47 (13) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frantzana, E.; Loukas, I.; Hatzidimitriou, A.G.; Tzimopoulos, D.; Akrivos, P. Coordination Modes of Para-Substituted Benzoates Towards Divalent Copper Centers in the Presence of Diimines. Inorganics 2024, 12, 301. https://doi.org/10.3390/inorganics12120301
Frantzana E, Loukas I, Hatzidimitriou AG, Tzimopoulos D, Akrivos P. Coordination Modes of Para-Substituted Benzoates Towards Divalent Copper Centers in the Presence of Diimines. Inorganics. 2024; 12(12):301. https://doi.org/10.3390/inorganics12120301
Chicago/Turabian StyleFrantzana, Eirini, Ioannis Loukas, Antonios G. Hatzidimitriou, Demetrios Tzimopoulos, and Pericles Akrivos. 2024. "Coordination Modes of Para-Substituted Benzoates Towards Divalent Copper Centers in the Presence of Diimines" Inorganics 12, no. 12: 301. https://doi.org/10.3390/inorganics12120301
APA StyleFrantzana, E., Loukas, I., Hatzidimitriou, A. G., Tzimopoulos, D., & Akrivos, P. (2024). Coordination Modes of Para-Substituted Benzoates Towards Divalent Copper Centers in the Presence of Diimines. Inorganics, 12(12), 301. https://doi.org/10.3390/inorganics12120301