Release of Pure H2 from Na[BH3(CH3NH)BH2(CH3NH)BH3] by Introduction of Methyl Substituents
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Syntheses
3.2. Instrumental
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Ma, Z.; Zheng, J.; Li, X.; Akiba, E.; Li, H.-W. Perspectives and Challenges of Hydrogen Storage in Solid-State Hydrides. Chin. J. Chem. Eng. 2021, 29, 1–12. [Google Scholar] [CrossRef]
- Milanese, C.; Jensen, T.; Hauback, B.; Pistidda, C.; Dornheim, M.; Yang, H.; Lombardo, L.; Zuettel, A.; Filinchuk, Y.; Ngene, P.; et al. Complex Hydrides for Energy Storage. Int. J. Hydrogen Energy 2019, 44, 7860–7874. [Google Scholar] [CrossRef][Green Version]
- Dematteis, E.M.; Amdisen, M.B.; Autrey, T.; Barale, J.; E Bowden, M.; E Buckley, C.; Cho, Y.W.; Deledda, S.; Dornheim, M.; de Jongh, P.; et al. Hydrogen Storage in Complex Hydrides: Past Activities and New Trends. Prog. Energy 2022, 4, 032009. [Google Scholar] [CrossRef]
- Huang, Z.; Autrey, T. Boron–Nitrogen–Hydrogen (BNH) Compounds: Recent Developments in Hydrogen Storage, Applications in Hydrogenation and Catalysis, and New Syntheses. Energy Environ. Sci. 2012, 5, 9257–9268. [Google Scholar] [CrossRef][Green Version]
- Hamilton, C.W.; Baker, R.T.; Staubitz, A.; Manners, I. B–N Compounds for Chemical Hydrogen Storage. Chem. Soc. Rev. 2009, 38, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Pan, Z.; Yu, X. Metal B-N-H Hydrogen-Storage Compound: Development and Perspectives. J. Alloys Compd. 2019, 794, 303–324. [Google Scholar] [CrossRef]
- Castilla-Martinez, C.A.; Moury, R.; Demirci, U.B. Amidoboranes and Hydrazinidoboranes: State of the Art, Potential for Hydrogen Storage, and Other Prospects. Int. J. Hydrogen Energy 2020, 45, 30731–30755. [Google Scholar] [CrossRef]
- Kumar, R.; Karkamkar, A.; Bowden, M.; Autrey, T. Solid-State Hydrogen Rich Boron–Nitrogen Compounds for Energy Storage. Chem. Soc. Rev. 2019, 48, 5350–5380. [Google Scholar] [CrossRef]
- Dovgaliuk, I.; Filinchuk, Y. Aluminium Complexes of B- and N-Based Hydrides: Synthesis, Structures and Hydrogen Storage Properties. Int. J. Hydrogen Energy 2016, 41, 15489–15504. [Google Scholar] [CrossRef]
- Paskevicius, M.; Jepsen, L.H.; Schouwink, P.; Černý, R.; Ravnsbæk, D.B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T.R. Metal Borohydrides and Derivatives—Synthesis, Structure and Properties. Chem. Soc. Rev. 2017, 46, 1565–1634. [Google Scholar] [CrossRef] [PubMed]
- Stephens, F.H.; Pons, V.; Tom Baker, R. Ammonia–Borane: The Hydrogen Source Par Excellence? Dalton Trans. 2007, 2613–2626. [Google Scholar] [CrossRef]
- Demirci, U.B. Ammonia Borane, a Material with Exceptional Properties for Chemical Hydrogen Storage. Int. J. Hydrogen Energy 2017, 42, 9978–10013. [Google Scholar] [CrossRef]
- Akbayrak, S.; Özkar, S. Ammonia Borane as Hydrogen Storage Materials. Int. J. Hydrogen Energy 2018, 43, 18592–18606. [Google Scholar] [CrossRef]
- Staubitz, A.; Robertson, A.P.M.; Manners, I. Ammonia-Borane and Related Compounds as Dihydrogen Sources. Chem. Rev. 2010, 110, 4079–4124. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, J.-G.; Man, T.-T.; Wu, M.; Chen, C.-C. Recent Process and Development of Metal Aminoborane. Chem. Asian J. 2013, 8, 1076–1089. [Google Scholar] [CrossRef]
- Demirci, U.B. Mechanistic Insights into the Thermal Decomposition of Ammonia Borane, a Material Studied for Chemical Hydrogen Storage. Inorg. Chem. Front. 2021, 8, 1900–1930. [Google Scholar] [CrossRef]
- Baitalow, F.; Baumann, J.; Wolf, G.; Jaenicke-Rößler, K.; Leitner, G. Thermal Decomposition of B–N–H Compounds Investigated by Using Combined Thermoanalytical Methods. Thermochim. Acta 2002, 391, 159–168. [Google Scholar] [CrossRef]
- Chua, Y.S.; Chen, P.; Wu, G.; Xiong, Z. Development of Amidoboranes for Hydrogen Storage. Chem. Commun. 2011, 47, 5116–5129. [Google Scholar] [CrossRef] [PubMed]
- Owarzany, R.; Leszczyński, J.P.; Fijalkowski, J.K.; Grochala, W. Mono- and Bimetalic Amidoboranes. Crystals 2016, 6, 88. [Google Scholar] [CrossRef][Green Version]
- Hügle, T.; Hartl, M.; Lentz, D. The Route to a Feasible Hydrogen-Storage Material: Mofs Versus Ammonia Borane. Eur. J. Chem. 2011, 17, 10184–10207. [Google Scholar] [CrossRef]
- Li, L.; Yao, X.; Sun, C.; Du, A.; Cheng, L.; Zhu, Z.; Yu, C.; Zou, J.; Smith, S.C.; Wang, P.; et al. Lithium-Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage. Adv. Funct. Mater. 2009, 19, 265–271. [Google Scholar] [CrossRef][Green Version]
- Huang, X.; Liu, Y.; Wen, H.; Shen, R.; Mehdi, S.; Wu, X.; Liang, E.; Guo, X.; Li, B. Ensemble-boosting effect of Ru-Cu alloy on catalytic activity towards hydrogen evolution in ammonia borane hydrolysis. Appl. Catal. B 2021, 287, 119960. [Google Scholar] [CrossRef]
- Kang, N.; Wei, X.; Shen, R.; Li, B.; Cal, E.G.; Moya, S.; Salmon, L.; Wang, C.; Coy, E.; Berlande, M.; et al. Fast Au-Ni@ZIF-8-catalyzed ammonia borane hydrolysis boosted by dramatic volcano-type synergy and plasmonic acceleration. Appl. Catal. B 2023, 320, 121957. [Google Scholar] [CrossRef]
- Mehdi, S.; Liu, Y.; Wei, H.; Zhang, H.; Shen, R.; Guan, S.; Wu, X.; Liu, T.; Wen, H.; Peng, Z.; et al. P-induced Co-based interfacial catalysis on Ni foam for hydrogen generation from ammonia borane. Appl. Catal. B 2023, 325, 122317. [Google Scholar] [CrossRef]
- Himmelberger, D.W.; Yoon, C.W.; Bluhm, M.E.; Carroll, P.J.; Sneddon, L.G. Base-Promoted Ammonia Borane Hydrogen-Release. J. Am. Chem. Soc. 2009, 131, 14101–14110. [Google Scholar] [CrossRef]
- Xiong, Z.; Yong, C.K.; Wu, G.; Chen, P.; Shaw, W.; Karkamkar, A.; Autrey, T.; Jones, M.O.; Johnson, S.R.; Edwards, P.P.; et al. High-Capacity Hydrogen Storage in Lithium and Sodium Amidoboranes. Nat. Mater. 2007, 7, 138–141. [Google Scholar] [CrossRef]
- Diyabalanage, H.V.K.; Nakagawa, T.; Shrestha, R.P.; Semelsberger, T.A.; Davis, B.L.; Scott, B.L.; Burrell, A.K.; David, W.I.F.; Ryan, K.R.; Jones, M.O.; et al. Potassium(I) Amidotrihydroborate: Structure and Hydrogen Release. J. Am. Chem. Soc. 2010, 132, 11836–11837. [Google Scholar] [CrossRef]
- Luo, J.; Kang, X.; Wang, P. Synthesis, Formation Mechanism, and Dehydrogenation Properties of the Long-Sought Mg(NH2BH3)2 Compound. Energy Environ. Sci. 2013, 6, 1018–1025. [Google Scholar] [CrossRef]
- Diyabalanage, H.V.K.; Shrestha, R.P.; Semelsberger, T.A.; Scott, B.L.; Bowden, M.E.; Davis, B.L.; Burrell, A.K. Calcium Amidotrihydroborate: A Hydrogen Storage Material. Angew. Chem. Int. Ed. 2007, 46, 8995–8997. [Google Scholar] [CrossRef]
- Wolf, G.; Baumann, J.; Baitalow, F.; Hoffmann, F.P. Calorimetric Process Monitoring of Thermal Decomposition of B–N–H Compounds. Thermochim. Acta 2000, 343, 19–25. [Google Scholar] [CrossRef]
- Ewing, W.C.; Marchione, A.; Himmelberger, D.W.; Carroll, P.J.; Sneddon, L.G. Syntheses and Structural Characterizations of Anionic Borane-Capped Ammonia Borane Oligomers: Evidence for Ammonia Borane H2 Release Via a Base-Promoted Anionic Dehydropolymerization Mechanism. J. Am. Chem. Soc. 2011, 133, 17093–17099. [Google Scholar] [CrossRef]
- Ewing, W.C.; Carroll, P.J.; Sneddon, L.G. Syntheses and Characterizations of Linear Triborazanes. Inorg. Chem. 2013, 52, 10690–10697. [Google Scholar] [CrossRef] [PubMed]
- Fijalkowski, K.J.; Jaroń, T.; Leszczyński, P.J.; Magos-Palasyuk, E.; Palasyuk, T.; Cyrański, M.K.; Grochala, W. M(BH3NH2BH2NH2BH3)—The Missing Link in the Mechanism of the Thermal Decomposition of Light Alkali Metal Amidoboranes. Phys. Chem. Chem. Phys. 2014, 16, 23340–23346. [Google Scholar] [CrossRef] [PubMed]
- Owarzany, R.; Fijalkowski, K.J.; Jaroń, T.; Leszczyński, P.J.; Dobrzycki, Ł.; Cyrański, M.K.; Grochala, W. Complete Series of Alkali-Metal M(BH3NH2BH2NH2BH3) Hydrogen-Storage Salts Accessed via Metathesis in Organic Solvents. Inorg. Chem. 2016, 55, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-M.; Jiang, X.; Jing, Y.; Chen, X. Synthesis and Dehydrogenation of Organic Salts of a Five-Membered B/N Anionic Chain, a Novel Ionic Liquid. Chem. Asian J. 2021, 16, 2475–2480. [Google Scholar] [CrossRef] [PubMed]
- Ju, M.-Y.; Guo, Y.; Chen, X.-M.; Chen, X. Facile Synthetic Method of Na[BH3(NH2BH2)2H] Based on the Reactions of Sodium Amidoborane (NaNH2BH3) with NiBr2 or CoCl2. Inorg. Chem. 2021, 60, 7101–7107. [Google Scholar] [CrossRef]
- Nawrocka, E.K.; Prus, A.; Owarzany, R.; Koźmiński, W.; Kazimierczuk, K.; Fijalkowski, K.J. The Assignment of 11B and 1H Resonances in the Post-Reaction Mixture from the Dry Synthesis of Li(BH3NH2BH2NH2BH3). Magn. Reson. Chem. 2023, 61, 49–54. [Google Scholar] [CrossRef]
- Owarzany, R.; Jaroń, T.; Kazimierczuk, K.; Malinowski, P.J.; Grochala, W.; Fijałkowski, K.J. In Towards Hydrogen-Rich Ionic (NH4)(BH3NH2BH2NH2BH3) and Related Molecular NH3BH2NH2BH2NH2BH3. Dalton Trans. 2023, 52, 3586–3595. [Google Scholar] [CrossRef]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef][Green Version]
- Do, J.-L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3, 13–19. [Google Scholar] [CrossRef][Green Version]
- Zhang, T.; Steenhaut, T.; Li, X.; Devred, F.; Devillers, M.; Filinchuk, Y. Aluminum Methylamidoborane Complexes: Mechanochemical Synthesis, Structure, Stability, and Reactive Hydride Composites. Sustain. Energy Fuels 2023, 7, 1119–1126. [Google Scholar] [CrossRef]
- Chen, X.-M.; Wang, J.; Liu, S.-C.; Zhang, J.; Wei, D.; Chen, X. Controllable Syntheses of B/N Anionic Aminoborane Chain Complexes by the Reaction of NH3BH3 with NaH and the Mechanistic Study. Dalton Trans. 2019, 48, 14984–14988. [Google Scholar] [CrossRef] [PubMed]
- Bowden, M.E.; Brown, I.W.M.; Gainsford, G.J.; Wong, H. Structure and Thermal Decomposition of Methylamine Borane. Inorganica Chim. Acta. 2008, 361, 2147–2153. [Google Scholar] [CrossRef]
- Dovgaliuk, I.; Jepsen, L.H.; Safin, D.A.; Łodziana, Z.; Dyadkin, V.; Jensen, T.R.; Devillers, M.; Filinchuk, Y. A Composite of Complex and Chemical Hydrides Yields the First Al-Based Amidoborane with Improved Hydrogen Storage Properties. Eur. J. Chem. 2015, 21, 14562–14570. [Google Scholar] [CrossRef]
- Dovgaliuk, I.; Møller, K.T.; Robeyns, K.; Louppe, V.; Jensen, T.R.; Filinchuk, Y. Complexation of Ammonia Boranes with Al3+. Inorg. Chem. 2019, 58, 4753–4760. [Google Scholar] [CrossRef]
- Favre-Nicolin, V.; Cerny, R. Fox, ‘Free Objects for Crystallography’: A Modular Approach to Ab Initio Structure Determination from Powder Diffraction. J. Appl. Crystallogr. 2002, 35, 734–743. [Google Scholar] [CrossRef][Green Version]
- Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B Condens. Matter. 1993, 192, 55–69. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Steenhaut, T.; Devillers, M.; Filinchuk, Y. Release of Pure H2 from Na[BH3(CH3NH)BH2(CH3NH)BH3] by Introduction of Methyl Substituents. Inorganics 2023, 11, 202. https://doi.org/10.3390/inorganics11050202
Zhang T, Steenhaut T, Devillers M, Filinchuk Y. Release of Pure H2 from Na[BH3(CH3NH)BH2(CH3NH)BH3] by Introduction of Methyl Substituents. Inorganics. 2023; 11(5):202. https://doi.org/10.3390/inorganics11050202
Chicago/Turabian StyleZhang, Ting, Timothy Steenhaut, Michel Devillers, and Yaroslav Filinchuk. 2023. "Release of Pure H2 from Na[BH3(CH3NH)BH2(CH3NH)BH3] by Introduction of Methyl Substituents" Inorganics 11, no. 5: 202. https://doi.org/10.3390/inorganics11050202
APA StyleZhang, T., Steenhaut, T., Devillers, M., & Filinchuk, Y. (2023). Release of Pure H2 from Na[BH3(CH3NH)BH2(CH3NH)BH3] by Introduction of Methyl Substituents. Inorganics, 11(5), 202. https://doi.org/10.3390/inorganics11050202