Charge-Compensated Derivatives of Nido-Carborane
Abstract
:1. Introduction
2. Charge-Compensated Derivatives of Nido-Carborane with Boron–Nitrogen Bond
3. Charge-Compensated Derivatives of Nido-Carborane with Boron–Phosphorus Bond
4. Charge-Compensated Derivatives of Nido-Carborane with Boron–Arsenic and Boron–Antimony Bonds
5. Charge-Compensated Derivatives of Nido-Carborane with Boron–Oxygen Bond
6. Charge-Compensated Derivatives of Nido-Carborane with Boron–Sulfur Bond
7. Charge-Compensated Derivatives of Nido-Carborane with Boron–Selenium and Boron–Tellurium Bonds
8. Some Other Charge-Compensated Derivatives of Nido-Carborane
9. Some Comments on Substitution Mechanisms in Nido-Carborane
Author Contributions
Funding
Conflicts of Interest
References
- McCleverty, J.A. Highlights in inorganic chemistry over the last 100 years. Annu. Rep. Prog. Chem. Sect. A 2004, 100, 3–13. [Google Scholar] [CrossRef]
- Heying, T.L.; Ager, J.W.; Clark, S.L.; Mangold, D.J.; Goldstein, H.L.; Hillman, M.; Polak, R.J.; Szymanski, J.W. A new series of organoboranes. I. Carboranes from the reaction of decaborane with acetylenic compounds. Inorg. Chem. 1963, 2, 1088–1092. [Google Scholar] [CrossRef]
- Fein, M.M.; Grafstein, D.; Paustian, J.E.; Bobinski, J.; Lichstein, B.M.; Mayes, N.; Schwartz, N.; Cohen MSCarboranes, I.I. The preparation of 1- and 1,2-substituted carboranes. Inorg. Chem. 1963, 2, 1115–1119. [Google Scholar] [CrossRef]
- Zakharkin, L.I.; Stanko, V.I.; Brattsev, V.A.; Chapovskii, Y.A.; Okhlobystin, Y.O. Synthesis of a new class of organoboron compounds, B10C2H12 (barene) and its derivatives. Bull. Acad. Sci. USSR Div. Chem. Sci. 1963, 12, 2074. [Google Scholar] [CrossRef]
- Zakharkin, L.I.; Stanko, V.I.; Brattstev, V.A.; Chapovskii, Y.A.; Struchkov, Y.T. The structure of B10C2H12 (barene) and its derivatives. Bull. Acad. Sci. USSR Div. Chem. Sci. 1963, 12, 1911. [Google Scholar] [CrossRef]
- Bregadze, V.I. Fifty years of carborane chemistry: The history of discovery and the first results. Russ. Chem. Bull. 2014, 63, 1021–1026. [Google Scholar] [CrossRef]
- Wiesboeck, R.A.; Hawthorne, M.F. Dicarbaundecaborane(13) and derivatives. J. Am. Chem. Soc. 1964, 86, 1642–1643. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Young, D.C.; Garrett, P.M.; Owen, D.A.; Schwerin, S.G.; Tebbe, F.N.; Wegner, P.A. Preparation and characterization of the (3)-1,2- and (3)-1,7-dicarbadodecahydroundecaborate(-1) ions. J. Am. Chem. Soc. 1968, 90, 862–868. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Young, D.C.; Andrews, T.D.; Howe, D.V.; Pilling, R.L.; Pitts, A.D.; Reintjer, M.; Warren, L.F.; Wegner, P.A. π-Dicarbollyl derivatives of the transition metals. Metallocene analogs. J. Am. Chem. Soc. 1968, 90, 879–896. [Google Scholar] [CrossRef]
- Grimes, R.N. Transition metal metallacarbaboranes. In Comprehensive Organometallic Chemistry II; Elsevier: Oxford, UK, 1995; Volume 1, pp. 373–430. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I. Chemistry of cobalt bis(dicarbollides). A review. Collect. Czech. Chem. Commun. 1999, 64, 783–805. [Google Scholar] [CrossRef]
- Grimes, R.N. Metallacarboranes in the new millennium. Coord. Chem. Rev. 2000, 200, 773–811. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I. Chemistry of nickel and iron bis(dicarbollides). A review. J. Organomet. Chem. 2002, 614–615, 27–36. [Google Scholar] [CrossRef]
- Hosmane, N.S.; Maguire, J.A. Metallacarboranes of d- and f-block metals. In Comprehensive Organometallic Chemistry III; Elsevier: Oxford, UK, 2007; Volume 3, pp. 175–264. [Google Scholar] [CrossRef]
- Grimes, R.N. Metallacarboranes of the transition and lanthanide elements. In Carboranes, 3rd ed.; Academic Press: London, UK, 2016; pp. 711–903. [Google Scholar] [CrossRef]
- Dash, B.P.; Satapathy, R.; Swain, B.R.; Mahanta, C.S.; Jena, B.B.; Hosmane, N.S. Cobalt bis(dicarbollide) anion and its derivatives. J. Organomet. Chem. 2017, 849, 170–194. [Google Scholar] [CrossRef]
- Kar, S.; Pradhan, A.N.; Ghosh, S. Polyhedral metallaboranes and metallacarboranes. In Comprehensive Organometallic Chemistry IV; Elsevier: Oxford, UK, 2022; Volume 9, pp. 263–369. [Google Scholar] [CrossRef]
- Pak, R.H.; Primus, F.J.; Rickard-Dickson, K.J.; Ng, L.L.; Kane, R.R.; Hawthorne, M.F. Preparation and properties of nido-carborane-specific monoclonal antibodies for potential use in boron neutron capture therapy for cancer. Proc. Natl. Acad. Sci. USA 1995, 92, 6986–6990. [Google Scholar] [CrossRef] [PubMed]
- Hogenkamp, H.P.C.; Collins, D.A.; Live, D.; Benson, L.M.; Naylor, S. Synthesis and characterization of nido-carborane-cobalamin conjugates. Nucl. Med. Biol. 2000, 27, 89–92. [Google Scholar] [CrossRef]
- Tolmachev, V.; Bruskin, A.; Sjöberg, S.; Carlsson, J.; Lundqvist, H. Preparation, radioiodination and in vitro evaluation of a nido-carborane-dextran conjugate, a potential residualizing label for tumor targeting proteins and peptides. J. Radioanal. Nucl. Chem. 2004, 261, 107–112. [Google Scholar] [CrossRef]
- Winberg, K.J.; Persson, M.; Malmström, P.-U.; Sjöberg, S.; Tolmachev, V. Radiobromination of anti-HER2/neu/ErbB-2 monoclonal antibody using the p-isothiocyanatobenzene derivative of the [76Br]undecahydro-bromo-7,8-dicarba-nido-undecaborate(1-) ion. Nucl. Med. Biol. 2004, 31, 425–433. [Google Scholar] [CrossRef]
- Wilbur, D.S.; Chyan, M.-K.; Hamlin, D.K.; Kegley, B.B.; Risler, R.; Pathare, P.M.; Quinn, J.; Vessella, R.L.; Foulon, C.; Zalutsky, M.; et al. Reagents for astatination of biomolecules: Comparison of the in vivo distribution and stability of some radioiodinated/astatinated benzamidyl and nido-carboranyl compounds. Bioconjug. Chem. 2004, 15, 203–223. [Google Scholar] [CrossRef]
- Wilkinson, S.M.; Gunosewoyo, H.; Barron, M.L.; Boucher, A.; McDonnell, M.; Turner, P.; Morrison, D.E.; Bennett, M.R.; McGregor, I.S.; Rendina, L.M.; et al. The first CNS-active carborane: A novel P2X7 receptor antagonist with antidepressant activity. ACS Chem. Neurosci. 2014, 5, 335–339. [Google Scholar] [CrossRef]
- El-Zaria, M.E.; Genady, A.R.; Janzen, N.; Petlura, C.I.; Beckford Vera, D.R.; Valliant, J.F. Preparation and evaluation of carborane-derived inhibitors of prostate specific membrane antigen (PSMA). Dalton Trans. 2014, 43, 4950–4961. [Google Scholar] [CrossRef]
- Neumann, W.; Xu, S.; Sárosi, M.B.; Scholz, M.S.; Crews, B.C.; Ghebreselasie, K.; Banerjee, S.; Marnett, L.J.; Hey-Hawkins, E. nido-Dicarbaborate induces potent and selective inhibition of cyclooxygenase-2. ChemMedChem 2016, 11, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Różycka, D.; Korycka-Machała, M.; Żaczek, A.; Dziadek, J.; Gurda, D.; Orlicka-Płocka, M.; Wyszko, E.; Biniek-Antosiak, K.; Rypniewski, W.; Olejniczak, A.B. Novel isoniazid-carborane hybrids active in vitro against Mycobacterium tuberculosis. Pharmaceuticals 2020, 13, 465. [Google Scholar] [CrossRef] [PubMed]
- Useini, L.; Mojić, M.; Laube, M.; Lönnecke, P.; Dahme, J.; Sárosi, M.B.; Mijatović, S.; Maksimović-Ivanić, D.; Pietzsch, J.; Hey-Hawkins, E. Carboranyl analogues of mefenamic acid and their biological evaluation. ACS Omega 2022, 7, 24282–24291. [Google Scholar] [CrossRef]
- Crespo, O.; Díez-Gil, C.; Gimeno, M.C.; Jones, P.G.; Laguna, A.; Ospino, I.; Tapias, J.; Villacampa, M.D.; Visbal, R. Influence of the group 11 metal on the emissive properties of complexes [M{(PR2)2C2B9H10}L]. Dalton Trans. 2013, 42, 8298–8306. [Google Scholar] [CrossRef]
- Wang, B.; Shelar, D.P.; Han, X.-Z.; Li, T.-T.; Guan, X.; Lu, W.; Liu, K.; Chen, Y.; Fu, W.-F.; Che, C.-M. Long-lived excited states of zwitterionic copper(I) complexes for photoinduced cross-dehydrogenative coupling reactions. Chem. Eur. J. 2015, 21, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Nishino, K.; Morisaki, Y.; Tanaka, K.; Chujo, Y. Electron-donating abilities and luminescence properties of tolane-substituted nido-carboranes. N. J. Chem. 2017, 41, 10550–10554. [Google Scholar] [CrossRef]
- Shafikov, M.Z.; Suleymanova, A.F.; Czerwieniec, R.; Yersin, H. Thermally activated delayed fluorescence from Ag(I) complexes: A route to 100% quantum yield at unprecedentedly short decay time. Inorg. Chem. 2017, 56, 13274–13285. [Google Scholar] [CrossRef]
- Shafikov, M.Z.; Suleymanova, A.F.; Czerwieniec, R.; Yersin, H. Design strategy for Ag(I)-based thermally activated delayed fluorescence reaching an efficiency breakthrough. Chem. Mater. 2017, 29, 1708–1715. [Google Scholar] [CrossRef]
- Nghia, N.V.; Jana, S.; Sujith, S.; Ryu, J.Y.; Lee, J.; Lee, S.U.; Lee, M.H. nido-Carboranes: Donors for thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 2018, 57, 12483–12488. [Google Scholar] [CrossRef]
- Nishino, K.; Hashimoto, K.; Tanaka, K.; Morisaki, Y.; Chujo, Y. Comparison of luminescent properties of helicene-like bibenzothiophenes with o-carborane and 5,6-dicarba-nido-decaborane. Sci. Chem. Chin. 2018, 61, 940–946. [Google Scholar] [CrossRef]
- Shafikov, M.Z.; Suleymanova, A.F.; Schinabeck, A.; Yersin, H. Dinuclear Ag(I) complex designed for highly efficient thermally activated delayed fluorescence. J. Phys. Chem. Lett. 2018, 9, 702–709. [Google Scholar] [CrossRef]
- Sujith, S.; Nam, E.B.; Lee, J.; Lee, S.U.; Lee, M.H. Enhancing the thermally activated delayed fluorescence of nido-carborane-appended triarylboranes by steric modification of the phenylene linker. Inorg. Chem. Front. 2020, 7, 3456–3464. [Google Scholar] [CrossRef]
- Kim, M.; Im, S.; Ryu, C.H.; Lee, S.H.; Hong, J.H.; Lee, K.M. Impact of deboronation on the electronic characteristics of closo-o-carborane: Intriguing photophysical changes in triazole-appended carboranyl luminophores. Dalton Trans. 2021, 50, 3207–3215. [Google Scholar] [CrossRef]
- Alconchel, A.; Crespo, O.; García-Orduña, P.; Gimeno, M.C. closo- or nido-Carborane diphosphane as responsible for strong thermochromism or time activated delayed fluorescence (TADF) in [Cu(N^N)(P^P)]0/+. Inorg. Chem. 2021, 60, 18521–18528. [Google Scholar] [CrossRef] [PubMed]
- Uemura, K.; Tanaka, K.; Chujo, Y. Conformation-dependent electron donation of nido-carborane substituents and its influence on phosphorescence of tris(2,2′-bipyridyl)ruthenium(II) complex. Crystals 2022, 12, 688. [Google Scholar] [CrossRef]
- Zhu, M.; Zhou, Q.; Cheng, H.; Sha, Y.; Bregadze, V.I.; Yan, H.; Sun, Z.; Li, X. Boron-cluster embedded necklace-shaped nanohoops. Angew. Chem. Int. Ed. 2022, 61, e202213470. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Sivaev, I.B.; Prikaznova, E.A.; Bregadze, V.I. Transition metal complexes with charge-compensated dicarbollide ligands. J. Organomet. Chem. 2014, 751, 221–250. [Google Scholar] [CrossRef]
- Vinogradov, M.M.; Nelyubina, Y.V.; Loginov, D.A.; Kudinov, A.R. Demethylation of the SMe2 substituent in cationic metallacarboranes. Halide anion influence. J. Organomet. Chem. 2015, 798, 257–262. [Google Scholar] [CrossRef]
- Vinogradov, M.M.; Nelyubina, Y.V.; Ikonnikov, N.S.; Strelkova, T.V.; Kudinov, A.R. First metallacarborane ethene complex [1,8-Me2-2,2-(C2H4)2-7-SMe2-2,1,8-IrC2B9H8] and its reaction with iodine. J. Organomet. Chem. 2016, 805, 54–58. [Google Scholar] [CrossRef]
- Vinogradov, M.M.; Nelyubina, Y.V.; Pavlov, A.P.; Novikov, V.V.; Shvydkiy, N.V.; Kudinov, A.R. Polyhedral rearrangements in the complexes of rhodium and iridium with isomeric carborane anions [7,8-Me2-X-SMe2-7,8-nido-C2B9H8]− (X = 9 and 10). Organometallics 2017, 36, 791–800. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Zhidkova, O.B.; Sivaev, I.B.; Starikova, Z.A.; Suponitsky, K.Y.; Yan, H.; Bregadze, V.I. Synthesis of rhodacarboranes containing σ- and π-carboranyl ligands in one molecule. J. Organomet. Chem. 2018, 867, 342–346. [Google Scholar] [CrossRef]
- Vinogradov, M.M.; Nelyubina, Y.V.; Ikonnikov, N.S. Different reactivity of cyclooctadiene complexes 3,3-(cod)-8-SMe2-closo-3,1,2-RhC2B9H10 and 1,8-Me2-2,2-(cod)-11-SMe2-2,1,8-closo-RhC2B9H8 toward iodine. J. Organomet. Chem. 2018, 867, 224–227. [Google Scholar] [CrossRef]
- Vinogradov, M.M.; Loginov, D.A. Rhoda- and iridacarborane halide complexes: Synthesis, structure and application in homogeneous catalysis. J. Organomet. Chem. 2020, 910, 121135. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Zhidkova, O.B.; Suponitsky, K.Y.; Anisimov, A.A.; Sivaev, I.B.; Yan, H.; Bregadze, V.I. Rhodacarboranes containing σ- and π-carborane ligands. New aspects. Inorg. Chim. Acta 2021, 518, 120243. [Google Scholar] [CrossRef]
- Vinogradov, M.M.; Nesterov, I.D.; Nelyubina, Y.V.; Pavlov, A.A. Pathway bifurcations in the cage rearrangement of metallacarboranes: Experimental and computational evidence. Dalton Trans. 2021, 50, 287–293. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Anufriev, S.A.; Bogdanova, E.V.; Sivaev, I.B.; Bregadze, V.I. Mercury(II) chloride in the synthesis of nido-carborane derivatives with B-N, B-O, and B-S bonds. Russ. Chem. Bull. 2022, 71, 91–101. [Google Scholar] [CrossRef]
- Tjarks, W.; Ghaneolhosseini, H.; Henssen, C.L.A.; Malmquist, J.; Sjöberg, S. Synthesis of para- and nido-carboranyl phenanthridinium compounds for neutron capture therapy. Tetrahedron Lett. 1996, 37, 6905–6908. [Google Scholar] [CrossRef]
- Batsanov, A.S.; Goeta, A.E.; Howard, J.A.K.; Hughes, A.K.; Malget, J.M. The synthesis of closo- and nido-(aminoalkyl)dicarbaboranes: A reexamination of contradictory literature reports, crystal structure of [7-{H3N(CH2)3}-7,8-C2B9H11]·NH2NH2. J. Chem. Soc. Dalton Trans. 2001, 1820–1826. [Google Scholar] [CrossRef]
- Cheung, M.-S.; Chan, H.-S.; Xie, Z. Synthesis and structural characterization of mono- and bisfunctional o-carboranes. Dalton Trans. 2005, 2375–2381. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Lee, J.-D.; Jeong, H.-J.; Son, K.-C.; Ko, J.; Cheong, M.; Kang, S.O. Sterically protected titanium (aminoethyl)dicarbollides: Synthesis of novel constrained-geometry complexes showing an unusual cage B.N-cyclization. Organometallics 2005, 24, 3008–3019. [Google Scholar] [CrossRef]
- Kalinin, V.N.; Rys, E.G.; Tyutyunov, A.A.; Starikova, Z.A.; Korlyukov, A.A.; Ol’shevskaya, V.A.; Sung, D.D.; Ponomaryov, A.B.; Petrovskii, P.V.; Hey-Hawkins, E. The first carborane triflates: Synthesis and reactivity of 1-trifluoromethanesulfonylmethyl- and 1,2-bis(trifluoromethanesulfonylmethyl)-o-carborane. Dalton Trans. 2005, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Tang, Y.; Xie, M.; Qian, C.; Xie, Z. Synthesis, structure, and olefin polymerization behavior of constrained-geometry Group 4 metallacarboranes incorporating imido-dicarbollyl ligands. Organometallics 2006, 25, 2578–2584. [Google Scholar] [CrossRef]
- Lee, J.-D.; Lee, Y.-J.; Son, K.-C.; Cheong, M.; Ko, J.; Kang, S.O. New types of constrained geometry Group 4 metal complexes derived from the aminomethyldicarbollyl ligand system: Synthesis and structural characterization of mono-dicarbollylamino and bis-dicarbollylamino Group 4 metal complexes. Organometallics 2007, 26, 3374–3384. [Google Scholar] [CrossRef]
- Lee, J.-D.; Lee, Y.-J.; Son, K.-C.; Han, W.-S.; Cheong, M.; Ko, J.; Kang, S.O. Synthesis, characterization, and reactivity of new types of constrained geometry group 4 metal complexes derived from picolyl-substituted dicarbollide ligand systems. J. Organomet. Chem. 2007, 692, 5403–5413. [Google Scholar] [CrossRef]
- Ioppolo, J.A.; Clegg, J.K.; Rendina, L.M. Dicarba-closo-dodecaborane(12) derivatives of phosphonium salts: Easy formation of nido-carborane phosphonium zwitterions. Dalton Trans. 2007, 1982–1985. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.E.; Issa, F.; Bhadbhade, M.; Groebler, L.; Witting, P.K.; Kassiou, M.; Rutledge, P.J.; Rendina, L.M. Boronated phosphonium salts containing arylboronic acid, closo-carborane, or nido-carborane: Synthesis, X-ray diffraction, in vitro cytotoxicity, and cellular uptake. J. Biol. Inorg. Chem. 2010, 15, 1305–1318. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-D.; Kim, H.-Y.; Han, W.-S.; Kang, S.O. New types of Group 4 and 13 metal complexes stabilized by homo- or hetero-donor functionalized dicarbollide ligands: Syntheses, characterizations, and structural studies of [{η5-C2B9H9(D)}-(η1-NMe2CH2)]M(NMe2)2 (D = CH2NMe2, PPh2; M = Ti, Zr) and [(η1-D)(η1-NMe2CH2)C2B9H10]MMe2 (D = CH2NMe2, PPh2; M = Al, Ga). Organometallics 2010, 29, 2348–2356. [Google Scholar] [CrossRef]
- Yao, Z.-J.; Jin, G.-X. Synthesis, reactivity, and structural transformation of mono- and binuclear carboranylamidinate-based 3d metal complexes and metallacarborane derivatives. Organometallics 2012, 31, 1767–1774. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Sivaev, I.B.; Godovikov, I.A.; Starikova, Z.A.; Bregadze, V.I.; Qi, S. Synthesis of new ω-amino- and ω-azidoalkyl carboranes. N. J. Chem. 2013, 37, 3865–3868. [Google Scholar] [CrossRef]
- Vinogradov, M.M.; Zakharova, M.V.; Timofeev, S.V.; Loginov, D.A.; Sivaev, I.B.; Nelyubina, Y.V.; Starikova, Z.A.; Bregadze, V.I.; Kudinov, A.R. The C-substituted charge-compensated dicarbollide [7-SMe2-7,8-C2B9H10]−: Synthesis and room-temperature rearrangement of the iridium complex. Inorg. Chem. Commun. 2015, 51, 80–82. [Google Scholar] [CrossRef]
- Tao, G.; Duan, Z.; Mathey, F. Zwitterionic nido-carborane-fused phospholes. Org. Lett. 2019, 21, 2273–2276. [Google Scholar] [CrossRef]
- Tao, G.; Yang, F.; Zhang, L.; Li, Y.; Duan, Z.; Mathey, F. Synthesis of phosphanaphthalenes and nido-carborane fused six-membered phosphacycles. Chin. Chem. Lett. 2021, 32, 194–197. [Google Scholar] [CrossRef]
- Tao, G.; Bai, M.; Liu, Z.; Duan, Z. Intermolecular cyclization between carboranylphosphines and electron-deficient alkynes. Organometallics 2021, 40, 4041–4044. [Google Scholar] [CrossRef]
- Stogniy, M.Y.U.; Sivaev, I.B. Synthesis and reactivity of cyclic oxonium derivatives of nido-carborane: A review. Reactions 2022, 3, 172–191. [Google Scholar] [CrossRef]
- Frank, R.; Grell, T.; Hiller, M.; Hey-Hawkins, E. Electrophilic substitution of the nido-dicarbaborate anion 7,8-nido-C2B9H12− with sulfenyl chlorides. Dalton Trans. 2012, 41, 6155–6161. [Google Scholar] [CrossRef] [PubMed]
- Gruzdev, D.A.; Telegina, A.A.; Ol’shevskaya, V.A.; Andronova, V.L.; Galegov, G.A.; Zarubaev, V.V.; Levit, G.L.; Krasnov, V.P. New nido-carborane-containing conjugates of purine: Synthesis and antiviral activity. Russ. Chem. Bull. 2022, 71, 2375–2382. [Google Scholar] [CrossRef]
- Gruzdev, D.A.; Telegina, A.A.; Levit, G.L.; Krasnov, V.P. N-Aminoacyl-3-amino-nido-carboranes as a group of boron-containing derivatives of natural amino acids. J. Org. Chem. 2022, 87, 5437–5441. [Google Scholar] [CrossRef]
- Cao, H.-J.; Wei, X.; Sun, F.; Zhang, X.; Lu, C.; Yan, H. Metal-catalyzed B–H acylmethylation of pyridylcarboranes: Access to carborane-fused indoliziniums and quinoliziniums. Chem. Sci. 2021, 12, 15563–15571. [Google Scholar] [CrossRef]
- Young, D.C.; Howe, D.V.; Hawthorne, M.F. Ligand derivatives of (3)-1,2-dicarbadodecahydroundecaborate(-1). J. Am. Chem. Soc. 1969, 91, 859–862. [Google Scholar] [CrossRef]
- Meshcheryakov, V.I.; Kitaev, P.S.; Lyssenko, K.A.; Starikova, Z.A.; Petrovskii, P.V.; Janoušek, Z.; Corsini, M.; Laschi, F.; Zanello, P.; Kudinov, A.R. (Tetramethylcyclobutadiene)cobalt complexes with monoanionic carborane ligands [9-L-7,8-C2B9H10]− (L = SMe2, NMe3 and py). J. Organomet. Chem. 2005, 690, 4745–4754. [Google Scholar] [CrossRef]
- Kang, H.C.; Lee, S.S.; Knobler, C.D.; Hawthorne, M.F. Syntheses of charge-compensated dicarbollide ligand precursors and their use in the preparation of novel metallacarboranes. Inorg. Chem. 1991, 30, 2024–2031. [Google Scholar] [CrossRef]
- Brattsev, V.A.; Danilova, G.N.; Stanko, V.I. Features of oxidative amination of o-dicarbaundecaborates. Zh. Obshch. Khim. 1972, 42, 1333–1339. [Google Scholar]
- Zakharkin, L.I.; Kalinin, V.N.; Zhigareva, G.G. Oxidation of dicarbadodecahydro-nido-undecaborate anions by mercuric chloride in tetrahydrofuran and pyridine. Russ. Chem. Bull. 1979, 28, 2198–2199. [Google Scholar] [CrossRef]
- Frank, R.; Auer, H.; Hey-Hawkins, E. Functionalisation of the nido-dicarbaborate anion nido-7,8-C2B9H12− by hydride abstraction. J. Organomet. Chem. 2013, 747, 217–224. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, W.; Liu, W.; Wei, X.; Chen, M.; Zhang, X.; Zhang, X.; Liang, Y.; Lu, C.; Yan, Y. Metal-free oxidative B-N coupling of nido-carborane with N-heterocycles. Angew. Chem. Int. Ed. 2019, 58, 11886–11892. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jei, B.B.; Scheremetjew, A.; Kuniyil, R.; Ackermann, L. Electrochemical B-H nitrogenation: Access to amino acid and BODIPY-labeled nido-carboranes. Angew. Chem. Int. Ed. 2021, 60, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-X.; Yan, H. Recent trends and tactics in facile functionalization of neutral icosahedral carboranes (C2B10H12) and nido-carborane (7,8-C2B9H12−). In Advances in the Synthesis and Catalytic Applications of Boron Clusters: A Tribute to the Works of Professor Francesc Teixidor and Professor Clara Viñas; Dieguez, M., Nuñez, R., Eds.; Advances in Catalysis; Academic Press: Cambridge, MA, USA, 2022; Volume 71, pp. 201–283. [Google Scholar] [CrossRef]
- Volkov, O.V.; Il’inchik, E.A.; Volkov, V.V.; Voronina, G.S.; Yur’eva, O.P. Comparative study of the physicochemical properties of adducts of 7,8-dicarba-nido-undecaborane(11) and its iodo-, bromo derivatives with pyridine. Koord. Khim. 1997, 23, 824–827. [Google Scholar]
- Polyanskaya, T.M. Molecular and crystal structure of nido-9-C5H5N-11-I-7,8-C2B9H10: Supramolecular architecture based on hydrogen bonds X–H···I (X = B, C). J. Struct. Chem. 2006, 47, 887–893. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Zhidkova, O.B.; Prikaznova, E.A.; Sivaev, I.B.; Semioshkin, A.; Godovikov, I.A.; Starikova, Z.A.; Bregadze, V.I. Direct synthesis of nido-carborane derivatives with pendant functional groups by copper-promoted reactions with dimethylalkylamines. J. Organomet. Chem. 2014, 757, 21–27. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Anufriev, S.A.; Shmal’ko, A.V.; Antropov, S.M.; Anisimov, A.A.; Suponitsky, K.Y.; Filippov, O.A.; Sivaev, I.B. The unexpected reactivity of 9-iodo-nidocarborane: From nucleophilic substitution reactions to the synthesis of tricobalt tris(dicarbollide) Na [4,4′,4′’-(MeOCH2CH2O)3-3,3′,3′’-Co3(μ3-O)(μ3-S)(1,2-C2B9H10)3]. Dalton Trans. 2021, 50, 2671–2688. [Google Scholar] [CrossRef]
- Druzina, A.A.; Zhidkova, O.B.; Dudarova, N.V.; Kosenko, I.D.; Ananyev, I.V.; Timofeev, S.V.; Bregadze, V.I. Synthesis and structure of nido-carboranyl azide and its “click” reactions. Molecules 2021, 26, 530. [Google Scholar] [CrossRef]
- Druzina, A.A.; Zhidkova, O.B.; Dudarova, N.V.; Nekrasova, N.A.; Suponitsky, K.Y.; Timofeev, S.V.; Bregadze, V.I. Synthesis of zwitter-ionic conjugate of nido-carborane with cholesterol. Molecules 2021, 26, 6687. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Prikaznova, E.A.; Zhidkova, O.B.; Druzina, A.A.; Starikova, Z.A.; Suponitsky, K.Y.; Godovikov, I.A.; Sivaev, I.B.; Bregadze, V.I. Tungsten carbonyl σ-complexes with C-thioethers based on 9-Me3N-7,8-C2B9H11. N. J. Chem. 2020, 44, 13934–13938. [Google Scholar] [CrossRef]
- Huang, R.; Zhao, W.; Xu, S.; Xu, J.; Li, C.; Lu, C.; Yan, H. Photoredox B-H functionalization to selective B-N(sp3) coupling of nido-carborane with primary and secondary amines. Chem. Commun. 2021, 57, 8580–8583. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Prikaznova, E.A.; Starikova, Z.A.; Godovikov, I.A.; Bregadze, V.I. Synthesis and structure of halogen derivatives of 9-trimethylammonio-7,8-dicarba-nido-undecaborane [9-Me3N-7,8-C2B9H11]. J. Organomet. Chem. 2010, 695, 1688–1693. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.U.; Anisimov, A.A.; Sivaev, I.B.; Bregadze, V.I. Nucleophilic addition reactions to the ethylnitrilium derivative of nido-carborane 10-EtC≡N-7,8-C2B9H11. N. J. Chem. 2018, 42, 17958–17967. [Google Scholar] [CrossRef]
- Gruzdev, D.A.; Telegina, A.A.; Chulakov, E.N.; Levit, G.L.; Krasnov, V.P. (7,8-Dicarba-nido-undecaboran-7-yl)acetic acid: Synthesis of individual enantiomers and the first example of the determination of the absolute configuration of chiral monosubstituted nido-carborane. N. J. Chem. 2022, 46, 17338–17347. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Anisimov, A.A.; Godovikov, I.A.; Sivaev, I.B.; Bregadze, V.I. Synthesis of novel carboranyl amidines. J. Organomet. Chem. 2020, 909, 121111. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Markov, V.Y.; Sivaev, I.B. Synthesis and crystal structures of nickel(II) and palladium(II) complexes with o-carboranyl amidine ligands. Dalton Trans. 2021, 50, 4967–4975. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. Coordination ability of 10-EtC(NHPr)=HN-7,8-C2B9H11 in the reactions with nickel(II) phosphine complexes. Crystals 2021, 11, 306. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Bogdanova, E.V.; Anufriev, S.A.; Sivaev, I.B. Synthesis of new rhodacarborane [3,3-(1′,5′-COD)-8-PrNH=C(Et)NH-3,1,2-RhC2B9H10]. Russ. J. Inorg. Chem. 2022, 67, 1537–1544. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Anisimov, A.A.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. 10-NCCH2CH2OCH2CH2C≡N-7,8-C2B9H11: Synthesis and reactions with various nucleophiles. Polyhedron 2019, 174, 114170. [Google Scholar] [CrossRef]
- Frank, R.; Adhikari, A.K.; Auer, H. Hey-Hawkins. Electrophile-induced nucleophilic substitution of the nido-dicarbaundecaborate anion nido-7,8-C2B9H12− by conjugated heterodienes. Chem. Eur. J. 2014, 20, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Zakharkin, L.I.; O1′shevskaya, V.A.; Sulaimankulova, D.D.; Antonovich, V.A. Cleavage of 3-amino-o-carborane and its N-derivatives by bases into the 3-amino-7,8-dicarbaundecaborate anion and its N-derivatives. Russ. Chem. Bull. 1991, 40, 1026–1032. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Shmal’ko, A.V.; Stogniy, M.Y.; Suponitsky, K.Y.; Sivaev, I.B. Isomeric ammonio derivatives of nido-carborane 3- and 10-H3N-7,8-C2B9H11. Phosphorus Sulfur Silicon Relat. Elem. 2020, 195, 901–904. [Google Scholar] [CrossRef]
- Telegina, A.A.; Gruzdev, D.A.; Levit, G.L.; Krasnov, V.P. Synthesis of a novel planar-chiral nido-carborane amino acid. Russ. Chem. Bull. 2021, 70, 539–544. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Cao, K.; Xu, T.-T.; Wu, J.; Jiang, L.; Yang, J. A facile approach for the synthesis of nido-carborane fused oxazoles via one pot deboronation/cyclization of 9-amide-o-carboranes. Chem. Commun. 2019, 55, 830–833. [Google Scholar] [CrossRef]
- Zakharkin, L.I.; Grandberg, N.V.; Antonovich, V.A. Synthesis of derivatives of (3)-1,2-dicarba-nido-undecaborate containing B-Si and B-P σ-bonds. Russ. Chem. Bull. 1976, 25, 1724–1727. [Google Scholar] [CrossRef]
- Zakharkin, L.I.; Ol’shevskaya, V.A.; Zhigareva, G.G.; Antonovich, V.A.; Petrovskii, P.V.; Yanovskii, A.I.; Polyakov, A.V.; Struchkov, Y.T. The substitution reaction at boron in the pentagonal plane in 7,8-C2B9H12−K+ and 7,8-C2B9H112−2Na+ on treatment with chlorodiphenylphosphine in solution in tetrahydrofuran. Organomet. Chem. USSR 1989, 2, 671–676. [Google Scholar]
- Kim, K.-M.; Do, Y.-K.; Knobler, C.B.; Hawthorne, M.F. Synthesis and structural characterization of a zwitterionic triphenylphosphine derivative of the dicarbollide anion: [nido-9-P(C6H5)3-7,8-C2B9H11]. Bull. Korean Chem. Soc. 1989, 10, 321–322. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, D.; Xu, J.; Li, C.; Lu, C.; Yan, H. Electrooxidative B-H functionalization of nido-carboranes. Angew. Chem. Int. Ed. 2021, 60, 7838–7844. [Google Scholar] [CrossRef] [PubMed]
- Sivaev, I.B.; Anufriev, S.A.; Shmal’ko, A.V. Transition metal catalyzed synthesis of derivatives of polyhedral boron hydrides with B-N, B-P, B-O and B-S bonds. In Advances in the Synthesis and Catalytic Applications of Boron Clusters: A Tribute to the Works of Professor Francesc Teixidor and Professor Clara Viñas; Dieguez, M., Nuñez, R., Eds.; Advances in Catalysis; Academic Press: Cambridge, MA, USA, 2022; Volume 71, pp. 47–89. [Google Scholar] [CrossRef]
- Kabytaev, K.Z.; Safronov, A.V.; Sevryugina, Y.V.; Barnes, C.L.; Jalisatgi, S.S.; Hawthorne, M.F. Novel synthetic approach to charge-compensated phosphonio-nido-carboranes. Synthesis and structural characterization of neutral mono and bis(phosphonio) nido-ortho-carboranes. Inorg. Chem. 2015, 54, 4143–4150. [Google Scholar] [CrossRef] [PubMed]
- Ishita, K.; Khalil, A.; Tiwari, R.; Gallucci, J.; Tjarks, W. Bis(tri-tert-butylphosphine)palladium(0)-catalyzed iodine–fluorine exchange at closo-carboranes. Eur. J. Inorg. Chem. 2018, 2018, 2821–2825. [Google Scholar] [CrossRef]
- Jasper, S.A.; Mattern, J.; Huffman, J.C.; Todd, L.J. Palladium-mediated substitution of the closo-B12H12(−2) and nido-7,8-C2B9H12(−1) ions by PMe2Ph: The single-crystal structure studies of 1,7-(PMe2Ph)2-closo-B12H10 and 9-PMe2Ph-nido-7,8-C2B9H11. Polyhedron 2007, 26, 3793–3798. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, Q.-B.; Yan, H. Synthesis and characterization of boron-substituted o-carborane derivatives containing B-C, B-Cl or B-P bond via B-H activation. Chin. J. Inorg. Chem. 2014, 30, 2246–2252. [Google Scholar]
- Viñas, C.; Cirera, M.R.; Teixidor, F.; Kivekäs, R.; Sillanpää, R.; Llibre, J. Synthesis and characterization of the first cyclic monothioether derivative of 1,2-o-carborane and its reactivity toward phosphine transition metal complexes. Inorg. Chem. 1998, 37, 6746–6750. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, C.; Wei, X.; Lu, J.; Lu, J.-Y. Palladium-catalyzed cascade deboronation/regioselective B-P coupling of closo-carboranes. ChemCatChem 2022, 14, e202101571. [Google Scholar] [CrossRef]
- Sun, C.; Lu, J.-Y.; Lu, J. Pd-Catalyzed selective B(6)-H phosphorization of nido-carboranes via cascade deboronation/B-H activation from closo-carboranes. Inorg. Chem. 2022, 61, 9623–9630. [Google Scholar] [CrossRef]
- Miller, S.B.; Hawthorne, M.F. Novel ligand rearrangement of closo-nickelacarbaboranes. J. Chem. Soc. Chem. Commun. 1976, 786–787. [Google Scholar] [CrossRef]
- King, R.E.; Miller, S.B.; Knobler, C.B.; Hawthorne, M.F. Simultaneous conversion of Ni-PR3 and B-H to Ni-H and B-PR3 linkages by thermal rearrangement of d8 closo-bis(triarylphosphine)nickelacarboranes. Crystal and molecular structure of [closo-3-(μ-CO)-8-PPh3-3,l,2-NiC2B9H10]2: A dimeric nickelacarborane complex containing a metal-metal bond. Inorg. Chem. 1983, 22, 3548–3554. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Prikaznov, A.V.; Anufriev, S.A. On relative electronic effects of polyhedral boron hydrides. J. Organomet. Chem. 2013, 747, 254–256. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives as an efficient synthetic tool for the modification of polyhedral boron hydrides. In Boron Science: New Technologies and Applications; Hosmane, N.S., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 623–637. [Google Scholar]
- Stogniy, M.Y.; Abramova, E.N.; Lobanova, I.A.; Sivaev, I.B.; Bragin, V.I.; Petrovskii, P.V.; Tsupreva, V.N.; Sorokina, O.V.; Bregadze, V.I. Synthesis of functional derivatives of 7,8-dicarba-nido-undecaborate anion by ring-opening of its cyclic oxonium derivatives. Collect. Czech. Chem. Commun. 2007, 72, 1676–1688. [Google Scholar] [CrossRef]
- Plešek, J.; Jelínek, T.; Mareš, F.; Heřmánek, S. Unique dialkylsulfoniomethylation of the 7,8-C2B9H12− ion to the 9-R2S-CH2-7,8-C2B9H11 zwitterions by formaldehyde and dialkyl sulfides. General synthesis of the compounds 10-R2E-7,8-C2B9H11 (E. = O, S). Collect. Czech. Chem. Commun. 1993, 58, 1534–1547. [Google Scholar] [CrossRef]
- Řezácová, P.; Pokorná, J.; Brynda, J.; Kožíšek, M.; Cígler, P.; Lepšík, M.; Fanfrlík, J.; Řezáč, J.; Šašková, K.G.; Sieglová, I.; et al. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes. J. Med. Chem. 2009, 52, 7132–7141. [Google Scholar] [CrossRef]
- Bakardjiev, M.; El Anwar, S.; Bavol, D.; Růžičková, Z.; Grüner, B. Focus on chemistry of the 10-dioxane-nido-7,8-dicarba-undecahydrido undecaborate zwitterion; exceptionally easy abstraction of hydrogen bridge and double-action pathways observed in ring cleavage reactions with OH− as nucleophile. Molecules 2020, 25, 814. [Google Scholar] [CrossRef] [PubMed]
- Stogniy, M.Y.; Sivaev, I.B.; Malysheva, Y.B.; Bregadze, V.I. Synthesis of Tetrahydropyran Oxonium Derivative of 7,8-Dicarba-nido-undecaborane anion [10-(CH2)5O-7,8-C2B9H11]; Vestnik N. I. Lobachevskiy Nizhegorod University: Nizhny Novgorod, Russia, 2013; Volume 4, pp. 115–117. Available online: http://www.unn.ru/pages/e-library/vestnik/99999999_West_2013_4(1)/19.pdf (accessed on 31 January 2023).
- Laskova, J.; Kosenko, I.; Serdyukov, A.; Sivaev, I.; Bregadze, V.I. Synthesis of naphthalimide derivatives of closo-dodecaborate and nido-carborane. J. Organomet. Chem. 2022, 959, 122186. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Sivaev, I.B.; Petrovskii, P.V.; Bregadze, V.I. Halogenation of the 7,8-dicarba-nido-undecaborate anion derivatives [10-RO-7,8-C2B9H11]−. Russ. Chem. Bull. 2012, 82, 91–94. [Google Scholar] [CrossRef]
- Olejniczak, A.; Wojtczak, B.; Lesnikowski, Z.J. 2′-Deoxyadenosine bearing hydrophobic carborane pharmacophore nucleosides. Nucleotides Nucleic Acids 2007, 26, 1611–1613. [Google Scholar] [CrossRef]
- Wojtczak, B.A.; Andrysiak, A.; Grüner, B.; Lesnikowski, Z.J. “Chemical ligation”: A versatile method for nucleoside modification with boron clusters. Chem. Eur. J. 2008, 14, 10675–10682. [Google Scholar] [CrossRef]
- Serdyukov, A.; Kosenko, I.; Druzina, A.; Grin, M.; Mironov, A.F.; Bregadze, V.I.; Laskova, J. Anionic polyhedral boron clusters conjugates with 7-diethylamino-4-hydroxycoumarin. Synthesis and lipophilicity determination. J. Organomet. Chem. 2021, 946–947, 121905. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Kazakov, G.S.; Sivaev, I.B.; Bregadze, V.I. Synthesis of podands with nido-carboranyl groups as a basis for construction of crown ethers with an incorporated metallacarborane moiety. Russ. Chem. Bull. 2013, 3, 699–704. [Google Scholar] [CrossRef]
- Shmal’ko, A.V.; Stogniy, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [Google Scholar] [CrossRef]
- Kazakov, G.S.; Stogniy, M.Y.; Sivaev, I.B.; Suponitsky, K.Y.; Godovikov, I.A.; Kirilin, A.D.; Bregadze, V.I. Synthesis of crown ethers with the incorporated cobalt bis(dicarbollide) fragment. J. Organomet. Chem. 2015, 798, 196–203. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Kosenko, I.D.; Semioshkin, A.A.; Sivaev, I.B. Dimethyloxonium and methoxy derivatives of nido-carborane and metal complexes thereof. Inorganics 2019, 7, 46. [Google Scholar] [CrossRef]
- Shmal’ko, A.V.; Anufriev, S.A.; Anisimov, A.A.; Stogniy, M.Y.; Sivaev, I.B.; Bregadze, V.I. Synthesis of cobalt and nickel 6,6′-diphenyl bis(dicarbollides). Russ. Chem. Bull. 2019, 68, 1239–1247. [Google Scholar] [CrossRef]
- Vinogradov, M.M.; Nelyubina, Y.V.; Aliyeu, T.M. New aspects of acid-assisted nucleophilic substitution reactions of 11-vertex nido-carboranes. Polyhedron 2022, 214, 115654. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Erokhina, S.A.; Suponitsky, K.Y.; Anisimov, A.A.; Laskova, J.N.; Godovikov, I.A.; de Biani, F.F.; Corsini, M.; Sivaev, I.B.; Bregadze, V.I. Synthesis and structure of bis(methylsulfanyl) derivatives of iron bis(dicarbollide). J. Organomet. Chem. 2018, 865, 239–256. [Google Scholar] [CrossRef]
- Plešek, J.; Janoušek, Z.; Heřmánek, S. Four new (CH3)2S·C2B9H11 isomers. Collect. Czech. Chem. Commun. 1978, 43, 2862–2868. [Google Scholar] [CrossRef]
- Yan, Y.-K.; Mingos, D.M.P.; Müller, T.E.; Williams, D.J.; Kurmoo, M. Synthesis and structure of a charge-compensated ferracarborane, commo-[3,3′-Fe{4-(Me2S)-1,2-C2B9H10}2], and its charge-transfer salt with 2,3-dichloro-5,6-dicyano-p-benzoquinone. J. Chem. Soc. Dalton Trans. 1994, 1735–1741. [Google Scholar] [CrossRef]
- Rosair, G.M.; Welch, A.J.; Weller, A.S.; Zahn, S.K. Sterically encumbered charge-compensated carbaboranes: Synthesis and reactivity. Molecular structures of 7-Ph-11-SMe2-7,8-nido-C2B9H10 and 1-Ph-3,3-(CO)2-7-SMe2-3,1,2-closo-RhC2B9H8. J. Organomet. Chem. 1997, 536–537, 299–308. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Prikaznov, A.V.; Naoufal, D. Fifty years of the closo-decaborate anion chemistry. Collect. Czech. Chem. Commun. 2010, 75, 1149–1199. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I.; Sjöberg, S. Chemistry of closo-dodecaborate anion [B12H12]2−: A review. Collect. Czech. Chem. Commun. 2002, 67, 679–727. [Google Scholar] [CrossRef]
- Cowie, J.; Hamilton, E.J.M.; Laurie, J.C.V.; Welch, A.J. Structure of 10,11-μ-hydro-9-dimethylsulfido-7,8-dicarba-nido-undecaborane(11). Acta Cryst. 1988, C44, 1648–1650. [Google Scholar] [CrossRef]
- Ellis, D.; Rosair, G.M.; Robertson, S.; Welch, A.J. 7,8-Di phenyl-9-di methyl sulfido-10,11-μ-hydro-7,8-dicarba-nido-undecaborane(9). Acta Cryst. 2000, C56, 1399–1400. [Google Scholar] [CrossRef]
- Grüner, B.; Holub, J.; Plešek, J.; Štıbr, B.; Thornton-Pett, M.; Kennedy, J.D. Dimethylsulfide-dicarbaborane chemistry. Isolation and characterisation of isomers [9-(SMe2)-nido-7,8-C2B9H10-X-Me] (where X = 1, 2, 3 and 4) and some related compounds. An unusual skeletal rearrangement. Dalton Trans. 2007, 42, 4859–4865. [Google Scholar] [CrossRef]
- Plešek, J.; Grüner, B.; Maloň, P. Synthesis and Properties of (±)- and (+)-4-MeS-3-C2H5-1,2,3-C2CoB9H10. Collect. Czech. Chem. Commun. 1993, 58, 1087–1092. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Zakharova, M.V.; Mosolova, E.M.; Godovikov, I.A.; Ananyev, I.V.; Sivaev, I.B.; Bregadze, V.I. Tungsten carbonyl σ-complexes of nido-carborane thioethers. J. Organomet. Chem. 2012, 721–722, 92–96. [Google Scholar] [CrossRef]
- Donaghy, K.J.; Carroll, P.J.; Sneddon, L.G. Reactions of 1,1′-bis(diphenylphosphino)ferrocene with boranes, thiaboranes, and carboranes. Inorg. Chem. 1997, 36, 547–553. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Sivaev, I.B.; Suponitsky, K.Y.; Bregadze, V.I. Practical synthesis of 9-methylthio-7,8-nido-carborane [9-MeS-7,8-C2B9H11]−. Some evidences of BH···X hydride-halogen bonds in 9-XCH2(Me)S-7,8-C2B9H11 (X = Cl, Br, I). J. Organomet. Chem. 2017, 849–850, 315–323. [Google Scholar] [CrossRef]
- Zakharova, M.V.; Sivaev, I.B.; Anufriev, S.A.; Timofeev, S.V.; Suponitsky, K.Y.; Godovikov, I.A.; Bregadze, V.I. A new approach to the synthesis of functional derivatives of nido-carborane: Alkylation of [9-MeS-nido-7,8-C2B9H11]−. Dalton Trans. 2014, 43, 5044–5053. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Zakharova, M.V.; Sivaev, I.B.; Bregadze, V.I. New carborane-containing acids and amines. Russ. Chem. Bull. 2017, 66, 1643–1649. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Rudakov, D.A.; Rakova, E.A.; Glukhov, I.V.; Starikova, Z.A.; Bragin, V.I.; Godovikov, I.A.; Shirokii, V.L.; Potkin, V.I.; Maier, N.A.; et al. Synthesis and structure of halogen derivatives of 9-dimethylsulfonium-7,8-dicarba-nido-undecaborane [9-Me2S-7,8-C2B9H11]. J. Organomet. Chem. 2007, 692, 5133–5140. [Google Scholar] [CrossRef]
- Rudakov, D.A.; Potkin, V.I. Chlorination of 9-dimethylsulfonio-7,8-dicarba-nido-undecarborane and 9-(N-pyridine)-11-iodo-7,8-dicarba-nido-undecarborane. Proc. Nat. Acad. Sci. Belarus Ser. Chem. 2009, 4, 69–72. (In Russian) [Google Scholar]
- Kazheva, O.N.; Rudakov, D.A.; Shilov, G.V.; D’yachenko, O.A.; Potkin, V.I. Structure of 6,11-dichloro-9-limethylthio-7,8-dicarba-nido-undecaborane [6,11-Cl2-9-SMe2-7,8-C2B9H9]. J. Struct. Chem. 2013, 54, 349–354. [Google Scholar] [CrossRef]
- Tutusaus, O.; Teixidor, F.; Nunez, R.; Vinas, C. Recent studies on RR’S.C2B9H11 charge-compensated ligands. Crystal structures of 10-(S(CH3)2)-7,8-C2B9H11 and 10-(S(CH2)4)-7,8-C2B9H11. J. Organomet. Chem. 2002, 657, 247–255. [Google Scholar] [CrossRef]
- Dunn, S.; Garrioch, R.M.; Rosair, G.M.; Smith, L.; Welch, J.A. Building a picture of heteroborane isomerisation: Synthesis and characterisation of the 10-(dialkylsulfane)-7,8-diphenyl-7,8-dicarba-nido-undecaboranes 7,8-Ph2-10-L-7,8-nido-C2B9H10 (L = SMe2, SMeEt, SEt2) and of intermediate and isomerised products arising from metallation of the first of these. Collect. Czech. Chem. Commun. 1999, 64, 1013–1027. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Sivaev, I.B.; Suponitsky, K.Y.; Godovikov, I.A.; Bregadze, V.I. Synthesis of 10-methylsulfide and 10-alkylmethylsulfonium nido-carborane derivatives: B–H·π interactions between the B–H–B hydrogen atom and alkyne group in 10-RC≡CCH2S(Me)-7,8-C2B9H11. Eur. J. Inorg. Chem. 2017, 4436–4443. [Google Scholar] [CrossRef]
- Erokhina, S.A.; Stogniy, M.Y.; Suponitsky, K.Y.; Kosenko, I.D.; Sivaev, I.B.; Bregadze, V.I. Synthesis of new nido-carborane based carboxylic acids and amines. Polyhedron 2018, 153, 145–151. [Google Scholar] [CrossRef]
- Janoušek, Z.; Heřmánek, S.; Plešek, J.; Štíbr, B. Tetracarba-dinido-docosaborane (C4B18H22), a new type of carborane, its chemistry and structure. Collect. Czech. Chem. Commun. 1974, 39, 2363–2373. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Erokhina, S.A.; Sivaev, I.B.; Bregadze, V.I. On the reaction of nido-carborane with thiourea. Russ. Chem. Bull. 2016, 65, 2704–2707. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Anisimov, A.A.; Sivaev, I.B.; Bregadze, V.I. Crystal structure of 9-dibenzylsulfide-7,8-dicarba-nido-undecaborane 9-Bn2S-7,8-C2B9H11. Molbank 2021, 2021, M1230. [Google Scholar] [CrossRef]
- Grishin, V.V.; Tolstaya, T.P.; Yanovskii, A.I.; Struchkov, Y.T. Synthesis and X-ray crystallographic analysis of 5(6)-dimethyl-sulfoxonium 7,8-dicarba-nido-undecarborate internal salt. Russ. Chem. Bull. 1984, 33, 788–793. [Google Scholar] [CrossRef]
- Hendershot, S.L.; Jeffery, J.C.; Jelliss, P.A.; Mullica, D.F.; Sappenfield, E.L.; Stone, F.G.A. Reaction of nido-7,8-C2B9H13 with dicobalt octacarbonyl: Crystal structures of the complexes [Co2(CO)2(η5-7,8-C2B9H11)2], [Co2(CO)(PMe2Ph)(η5-7,8-C2B9H11)2], and [CoCl(PMe2Ph)2(η5-7,8-C2B9H11)]. Inorg. Chem. 1996, 35, 6561–6570. [Google Scholar] [CrossRef] [PubMed]
- Kuvshinova, S.S.; Nelyubina, Y.V.; Smol’yakov, A.F.; Kosenko, I.D.; Barakovskaya, I.G.; Loginov, D.A. Usage of (C5R5)Co(CO)I2 (R = H, Me) for the synthesis of 12-vertex closo-cobaltacarboranes. Unexpected formation of 10-{CpCo(C5H4)}-7,8-Me2-7,8-nido-C2B9H9. J. Organomet. Chem. 2018, 865, 109–113. [Google Scholar] [CrossRef]
- Bregadze, V.I.; Timofeev, S.V.; Sivaev, I.B.; Lobanova, I.A. Substitution reactions at boron atoms in metallacarboranes. Russ. Chem. Rev. 2004, 73, 433–453. [Google Scholar] [CrossRef]
- Olsen, F.P.; Hawthorne, M.F. Halodicarbaundecaborate(11) ions. Inorg. Chem. 1965, 4, 1839–1840. [Google Scholar] [CrossRef]
- Pak, R.H.; Kane, R.R.; Knobler, C.B.; Hawthorne, M.F. Synthesis and structural characterization of [Me3NH][nido-9,1l-I2-7,8-C2B9H10] and [Me3NH][nido-9-I-7,8-C2B9H11]. Inorg. Chem. 1994, 33, 5355–5357. [Google Scholar] [CrossRef]
- Santos, E.C.; Pinkerton, A.B.; Kinkead, S.A.; Hurlburt, P.K.; Jasper, S.A.; Huffman, C.J.C.; Todd, L.J. Syntheses of nido-9,11-X2-7,8-C2B9H10− anions (X = Cl, Br or I) and the synthesis and structural characterization of N(C2H5)4[commo-3,3′-Co(4,7-Br2-3,1,2-CoC2B9H9)2]. Polyhedron 2002, 19, 1777–1781. [Google Scholar] [CrossRef]
- Fox, M.A.; Hughes, A.K.; Malget, J.M. Cage-closing reactions of the nido-carborane anion 7,9-C2B9H12 and derivatives; formation of neutral 11-vertex carboranes by acidification. J. Chem. Soc. Dalton Trans. 2002, 3505–3517. [Google Scholar] [CrossRef]
- Colquhoun, H.M.; Greenhough, T.J.; Wallbridge, M.G.H. Carbaborane derivatives of the late- and post-transition elements. Part 2. Dicarbaundecaboranyl compounds of copper (I), gold (I), and mercury (II); the crystal and molecular structure of 3-triphenylphosphine-3-mercura-1,2-dicarbadodecaborane(II), a pseudo-σ-bonded metallacarbaborane. J. Chem. Soc. Dalton Trans. 1979, 619–628. [Google Scholar] [CrossRef]
- Teixidor, F.; Ayllon, J.A.; Viñas, C.; Kivekäs, R.; Sillanpää, R.; Casabo, J. Mercury coordination to Exo-dithio-7,8-dicarba-nido-undecaborate derivatives. J. Organomet. Chem. 1994, 483, 153–157. [Google Scholar] [CrossRef]
- Shaw, K.F.; Reid, B.D.; Welch, A.J. Synthesis and characterisation of metal complexes of ether carbaboranes. Molecular structures of d6 ML3, d8 ML2 and d10 ML complexes of mono- and di-ether C2B9 carbaborane ligands, showing the progressive importance of secondary M…O bonding. J. Organomet. Chem. 1994, 482, 207–220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stogniy, M.Y.; Anufriev, S.A.; Sivaev, I.B. Charge-Compensated Derivatives of Nido-Carborane. Inorganics 2023, 11, 72. https://doi.org/10.3390/inorganics11020072
Stogniy MY, Anufriev SA, Sivaev IB. Charge-Compensated Derivatives of Nido-Carborane. Inorganics. 2023; 11(2):72. https://doi.org/10.3390/inorganics11020072
Chicago/Turabian StyleStogniy, Marina Yu., Sergey A. Anufriev, and Igor B. Sivaev. 2023. "Charge-Compensated Derivatives of Nido-Carborane" Inorganics 11, no. 2: 72. https://doi.org/10.3390/inorganics11020072
APA StyleStogniy, M. Y., Anufriev, S. A., & Sivaev, I. B. (2023). Charge-Compensated Derivatives of Nido-Carborane. Inorganics, 11(2), 72. https://doi.org/10.3390/inorganics11020072