Synthesis, Structure and Bonding of the Tungstaboranes [Cp*W(CO)2B3H8] and [(Cp*W)3(CO)2B4H7]
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photolysis of [Cp*M(CO)3Me] (M = W, Mo) with [BH3·SMe2]
2.2. Reactivity of [Cp*WCl4] with [Cr(CO)5∙THF]
3. Materials and Methods
3.1. General Methods and Instrumentation
3.2. Single Crystal X-ray Diffraction Analysis
3.3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lipscomb, W.L. Boron Hydrides; Benjamin: New York, NY, USA, 1963. [Google Scholar]
- Longuet-Higgins, H.C. The structures of electron-deficient molecules. Q. Rev. Chem. Soc. 1957, 11, 121–133. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Ward, I.M. Metallaboranes and Metal-Boron Bonding. Chem. Soc. Rev. 1974, 3, 231–271. [Google Scholar] [CrossRef]
- Greenwood, N.N. The concept of boranes as ligands. Coord. Chem. Rev. 2002, 226, 61–69. [Google Scholar] [CrossRef]
- Fehlner, T.P.; Halet, J.-F.; Saillard, J.-Y. Molecular Clusters: A Bridge to Solid-State Chemistry; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kennedy, J.D. The Polyhedral Metallaboranes Part II. Metallaboranes Clusters with Eight Vertices and More. Prog. Inorg. Chem. 1986, 34, 211–434. [Google Scholar]
- Boyd, A.S.F.; Burke, A.; Ellis, D.; Ferrer, D.; Giles, B.T.; Laguna, M.A.; McIntosh, R.; Macgregor, S.A.; Ormsby, D.L.; Rosair, G.M.; et al. Supraicosahedral (metalla)carboranes. J. Pure Appl. Chem. 2003, 75, 1325–1333. [Google Scholar] [CrossRef]
- Bose, S.K.; Geetharani, K.; Varghese, B.; Ghosh, S. Unusual organic chemistry of a metallaborane substrate: Formation of a tantalaborane complex with a bridging Acyl group (μ-n2). Inorg. Chem. 2010, 49, 6375–6377. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Noll, B.C.; Fehlner, T.P. Expansion of iridaborane clusters by addition of monoborane. Novel metallaboranes and mechanistic detail. Dalton Trans. 2008, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Kar, S.; Ghosh, S. Borane Polyhedra Beyond Icosahedron. In 50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules; Springer: Cham, Switzerland, 2021; Volume 187, pp. 109–138. [Google Scholar]
- Zhang, A.; Xie, Z. Recent Progress in the Chemistry of Supercarboranes. Chem. Asian J. 2010, 5, 1742–1757. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Z. Synthesis, Structure, and Reactivity of 13- and 14-Vertex Carboranes. Acc. Chem. Res. 2014, 47, 1623–1633. [Google Scholar] [CrossRef]
- Dustin, D.F.; Dunks, G.B.; Hawthorne, M.F. Novel 13-Vertex Metallocarborane Complexes Formed by Polyhedral Expansion of 1,2-Dicarba-closo-dodecaborane(12) (1,2-B10C2H12). J. Am. Chem. Soc. 1973, 95, 1109–1115. [Google Scholar] [CrossRef]
- Hoffmann, R. Building Bridges Between Inorganic and Organic Chemistry (Nobel Lecture). Angew. Chem. Int. Ed. 1982, 21, 711–724. [Google Scholar] [CrossRef]
- Wade, K. Skeletal electron counting in cluster species. Some generalisations and predictions. Inorg. Nucl. Chem. Lett. 1972, 8, 559–562. [Google Scholar] [CrossRef]
- Mingos, D.M.P. Polyhedral skeletal electron pair approach. Acc. Chem. Res. 1984, 17, 311–319. [Google Scholar] [CrossRef]
- Jemmis, E.D.; Balakrishnarajan, M.M.; Pancharatna, P.D. A Unifying Electron-Counting Rule for Macropolyhedral Boranes, Metallaboranes, and Metallocenes. J. Am. Chem. Soc. 2001, 123, 4313–4323. [Google Scholar] [CrossRef] [PubMed]
- Bullick, H.J.; Grebenik, P.D.; Green, M.L.H.; Hughes, A.K.; Leach, J.B.; Mountford, P. Reactivity of nido-[2-{Fe(η-C5H5)}B5H10] with some transition-metal hydride complexes. J. Chem. Soc. Dalton Trans. 1994, 3337–3342. [Google Scholar] [CrossRef]
- Roy, D.K.; Mondal, B.; Anju, R.S.; Ghosh, S. Chemistry of Diruthenium and Dirhodium Analogues of Pentaborane(9): Synthesis and Characterization of Metal N,S-Heterocyclic Carbene and B-Agostic Complexes. Chem. Eur. J. 2015, 21, 3640–3648. [Google Scholar] [CrossRef]
- Ghosh, S.; Lei, X.; Cahill, C.L.; Fehlner, T.P. Symmetrical Scission of the Coordinated Tetraborane in [(Cp*ReH2)2B4H4] on CO Addition and Reassociation of the Coordinated Diboranes on H2 Loss. Angew. Chem. Int. Ed. 2000, 39, 2900–2902. [Google Scholar] [CrossRef]
- Hashimoto, H.; Shang, M.; Fehlner, T.P. Reactions of an Electronically Unsaturated Chromaborane. Coordination of CS2 to (η5-C5Me5)2Cr2B4H8 and Its Hydroboration to a Methanedithiolato Ligand. Organometallics 1996, 15, 1963–1965. [Google Scholar] [CrossRef]
- Green, M.L.H.; Leach, J.B.; Kelland, M.A. Synthesis and Interconversion of Some Small Ruthenaboranes: Reaction of a Ruthenium Borohydride with Pentaborane(9) to Form Larger Ruthenaboranes. Organometallics 2007, 26, 4031–4037. [Google Scholar] [CrossRef]
- Weller, A.S. d- and f-Block Metallaboranes. In Comprehensive Organometallic Chemistry III; Crabtree, R.H., Mingos, D.M.P., Eds.; Elsevier: Oxford, UK, 2006; Volume 3, Chapter 3.04; pp. 133–174. [Google Scholar]
- Fehlner, T.P. Metallaboranes. In Structural and Electronic Paradigms in Cluster Chemistry; Springer: Berlin/Heidelberg, Germany, 1997; Volume 87, pp. 111–135. [Google Scholar]
- Sahoo, S.; Reddy, K.H.K.; Dhayal, R.S.; Mobin, S.M.; Ramkumar, V.; Jemmis, E.D.; Ghosh, S. Chlorinated hypoelectronic dimetallaborane clusters: Synthesis, characterization, and electronic structures of (η-C5Me 5W)2B5HnCIm, (n = 7, m = 2 and n = 8, m = 1). Inorg. Chem. 2009, 48, 6509–6516. [Google Scholar] [CrossRef]
- Ferguson, G.; Jennings, M.C.; Lough, A.J.; Coughlan, S.; Spalding, T.R.; Kennedy, J.D.; Fontaine, X.L.R.; Stibr, B. Novel rhodathiaborane complexes derived from [(PPh3)2RhSB9H10]. J. Chem. Soc. Chem. Commun. 1990, 891–894. [Google Scholar] [CrossRef]
- Bown, M.; Fontaine, X.L.R.; Greenwood, N.N.; Kennedy, J.D. Organoruthenaborane Chemistry. VIII. Reactions of [{(η6-C6Me6)RuCl2}2] and [{(η6-MeC6HPr)RuCl2}2] with Cs[arachno-6-SB9H12]: Isolation of ten-, eleven-, and twelve-vertex ruthenathiaboranes and their characterization by N.M.R. spectroscopy. Z. Anorg. Allg. Chem. 1991, 602, 17–29. [Google Scholar] [CrossRef]
- Mazighi, K.; Carroll, P.J.; Sneddon, L.G. Syntheses and structural characterizations of hypho- and arachno-metalladithiaborane clusters. Inorg. Chem. 1992, 31, 3197–3204. [Google Scholar] [CrossRef]
- Thornton-Pett, M.; Beckett, M.A.; Kennedy, J.D. Polyhedral phosphaborane chemistry: Crystal and molecular structure of the diphenylphosphido-bridged arachno-decaboranyl cluster compound [PMePh3][6,9-µ-(PPh2)B10H12]. J. Chem. Soc. Dalton Trans. 1986, 303–308. [Google Scholar] [CrossRef]
- Goedde, D.M.; Girolami, G.S. A New Class of CVD Precursors to Metal Borides: Cr(B3H8)2 and Related Octahydrotriborate Complexes. J. Am. Chem. Soc. 2004, 126, 12230–12231. [Google Scholar] [CrossRef] [PubMed]
- Deck, K.J.; Nishihara, Y.; Shang, M.; Fehlner, T.P. Preparation and Structure of (Cp*Cr)2B4H8. An Unsaturated Metallaborane Cluster with an Unexpected Structure. J. Am. Chem. Soc. 1994, 116, 8408–8409. [Google Scholar] [CrossRef]
- Weller, A.S.; Shang, M.; Fehlner, T.P. Synthesis and Structure of the Metallaborane Cp*3(μ-H)W3B8H8 from the Thermolysis of Cp*H3WB4H8 (Cp* = η5-C5Me5). A Close-Packed 11-Atom Boron-Rich Cluster. J. Am. Chem. Soc. 1998, 120, 8283–8284. [Google Scholar] [CrossRef]
- Weller, A.S.; Shang, M.; Fehlner, T.P. Synthesis of Mono- and Ditungstaboranes from Reaction of Cp*WCl4 and [Cp*WCl2]2 with BH3·thf or LiBH4 (Cp* = η5-C5Me5). Control of Reaction Pathway by Choice of Monoboron Reagent and Oxidation State of Metal Center. Organometallics 1999, 18, 53–64. [Google Scholar] [CrossRef]
- Mondal, B.; Bag, R.; Ghorai, S.; Bakthavachalam, K.; Jemmis, E.D.; Ghosh, S. Synthesis, Structure, Bonding, and Reactivity of Metal Complexes Comprising Diborane(4) and Diborene(2): [{Cp*Mo(CO)2}2{μ-η2:η2-B2H4}] and [{Cp*M(CO)2}2B2H2M(CO)4], M = Mo,W. Angew. Chem. Int. Ed. 2018, 57, 8079–8083. [Google Scholar] [CrossRef] [PubMed]
- Mondal, B.; Bag, R.; Ghosh, S. Combined Experimental and Theoretical Investigations of Group 6 Dimetallaboranes [(Cp*M)2B4H10] (M = Mo and W). Organometallics 2018, 37, 2419–2428. [Google Scholar] [CrossRef]
- Bag, R.; Saha, S.; Borthakur, R.; Mondal, B.; Roisnel, T.; Dorcet, V.; Halet, J.-F.; Ghosh, S. Synthesis, Structures and Chemistry of the Metallaboranes of Group 4-9 with M2B5 Core having a Cross Cluster M-M Bond. Inorganics 2019, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Ramalakshmi, R.; Bhattacharyya, M.; Rao, C.E.; Ghosh, S. Synthesis, structure and chemistry of low-boron containing molybdaborane: Arachno-[Cp*Mo(CO)2B3H8]. J. Organomet. Chem. 2015, 792, 31–36. [Google Scholar] [CrossRef]
- Grebenik, P.D.; Leach, J.B.; Green, M.L.H.; Walker, N.M. Transition metal mediated homologation of BH3·THF: Synthesis and crystal structure of [WH3(PMe3)3B3H8]. J. Organomet. Chem. 1988, 345, C31–C34. [Google Scholar] [CrossRef]
- Ghosh, S.; Beatty, A.M.; Fehlner, T.P. The Reaction of Cp*ReH6, Cp* = C5Me5, with Monoborane to Yield a Novel Rhenaborane. Synthesis and Characterization of arachno-Cp*ReH3B3H8. Collect. Czech. Chem. Commun. 2002, 67, 808–812. [Google Scholar] [CrossRef]
- Grebenik, P.D.; Leach, J.B.; Pounds, J.M. Niobium metallaboranes: A novel metallaborane analogue of pentaborane (11). J. Organomet. Chem. 1990, 382, C1–C5. [Google Scholar] [CrossRef]
- Geetharani, K.; Bose, S.K.; Pramanik, G.; Saha, T.K.; Ramkumar, V.; Ghosh, S. An Efficient Route to Group 6 and 8 Metallaborane Compounds: Synthesis of arachno-[Cp*Fe(CO)B3H8] and closo-[(Cp*M)2B5H9] (M = Mo, W). Eur. J. Inorg. Chem. 2009, 2009, 1483–1487. [Google Scholar] [CrossRef]
- Gaines, D.F.; Hildebrandt, S.J. Syntheses and Properties of Some Neutral Octahydrotriborate(l-) Complexes of Chromium-, Manganese-, and Iron-Group Metals. Inorg. Chem. 1978, 17, 794–806. [Google Scholar] [CrossRef]
- Rau, M.S.; Kretz, C.M.; Geoffroy, G.L.; Rheingold, A.L. Reaction of Cp*MoCl4 and Cp*WCl4 with H2O, H2S, amines, and hydrazines. Formation of the trioxo anions [Cp*Mo(O)3]- and [Cp*W(O)3]- and the trisulfido anion [Cp*W(S)3]−. Organometallics 1993, 12, 3447–3460. [Google Scholar] [CrossRef]
- Lupan, A.; King, R.B. Flattened deltahedral structures and bridging hydrogen atoms in hypoelectronic dimolybdaboranes and ditungstaboranes. J. Organomet. Chem. 2014, 754, 94–103. [Google Scholar] [CrossRef]
- Aldridge, S.; Shang, M.; Fehlner, T.P. Directed Synthesis of Chromium and Molybdenum Metallaborane Clusters. Preparation and Characterization of (Cp*Cr)2B5H9, (Cp*Mo)2B5H9 and (Cp*MoCl)2B4H10. J. Am. Chem. Soc. 1997, 119, 2339–2340. [Google Scholar] [CrossRef]
- Mondal, B.; Bag, R.; Roisnel, T.; Ghosh, S. Use of Single-Metal Fragments for Cluster Building: Synthesis, Structure, and Bonding of Heterometallaboranes. Inorg. Chem. 2019, 58, 2744–2754. [Google Scholar] [CrossRef] [PubMed]
- Aldridge, S.; Hashimoto, H.; Kawamura, K.; Shang, M.; Fehlner, T.P. Cluster Expansion Reactions of Group 6 Metallaboranes. Syntheses, Crystal Structures, and Spectroscopic Characterizations of (Cp*Cr)2B5H9, (Cp*Cr)2B4H8Fe(CO)3, (Cp*Cr)2B4H7Co(CO)3, and (Cp*Mo)2B5H9Fe(CO)3. Inorg. Chem. 1998, 37, 928–940. [Google Scholar] [CrossRef]
- Mahmoud, K.A.; Rest, A.J.; Alt, H.G.; Eichner, E.; Jansen, B.M. Photochemistry of alkyltricarbonyl(η5-cyclopentadienyl)tungsten (alkyl = Et, Prn, Pri, Bun, or CH2Ph), tricarbonyl(η5-cyclopentadienyl) (phenyl)tungsten, tricarbonyl(η5-pentamethylcyclopentadienyl)(n-propyl)tungsten, and tricarbonyl(η5-cyclopentadienyl)(ethyl)-molybdenum in gas matrices at 12 K and in solutions at 243 K. J. Chem. Soc. Dalton Trans. 1984, 175–186. [Google Scholar]
- Murray, R.C.; Blum, L.; Liu, A.H.; Schrock, R.R. Simple Routes to Mono(η5- pentamethylcyclopentadienyl) Complexes of Molybdenum(V) and Tungsten(V). Organometallics 1985, 4, 953–954. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT –Crystal structure refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXS97 and SHELXL97: Program for Crystal Structure Solution and Refinement; University of Gottingen: Gottingen, Germany, 1997. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.G.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. A New Basis Set Exchange: An Open, up-to-date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef]
- London, F.J. Quantum theory of interatomic currents in aromatic combinations. J. Phys. Radium 1937, 8, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Ditchfield, R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974, 27, 789–807. [Google Scholar] [CrossRef]
- Wolinski, K.; Hinton, J.F.; Pulay, P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990, 112, 8251–8260. [Google Scholar] [CrossRef]
- Chemcraft - Graphical Software for Visualization of Quantum Chemistry Computations. Version 1.8, Build 648. Available online: https://www.chemcraftprog.com (accessed on 31 May 2023).
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Landis, C.R.; Weinhold, F. NBO Program 6.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2013. [Google Scholar]
- Wiberg, K. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron 1968, 24, 1083–1096. [Google Scholar] [CrossRef]
Metal-B3H8 Complexes | Spectroscopic Parameters (ppm) | Structural Parameters | Ref. | ||
---|---|---|---|---|---|
11B{1H} NMR [a] | 1H NMR [b] | Dihedral Angle [c] (°) | d[B-B] [d] (Å) | ||
- [e] | - [e] | 120 | 1.767 | [30] | |
−0.8 | −7.90 | 127.98 | 1.81 | [38] | |
6.2 | −10.30 | 124.7 | 1.707 | [39] | |
−1.9 | −12.01 | 117 | 1.830 | [40] | |
- [e] | - [e] | 124.93 | 1.727 | [41] | |
−0.5 | −15.43 | 122.7 | 1.725 | [42] | |
1.0 | −10.01 | 120.1 | 1.732 | [37] | |
1.8 | −11.33 | 121.5 | 1.767 | This work |
Compound | 1 | 4 |
---|---|---|
CCDC no. | 2249935 | 2251177 |
Empirical formula | C12H23B3O2W | C32H52B4O2W3 |
Formula weight | 415.58 | 1063.52 |
Crystal system | Monoclinic | Monoclinic |
Space group | P21/n | P21/n |
a (Å) | 11.7761(4) | 11.1773(4) |
b (Å) | 10.3202(3) | 15.7656(6) |
c (Å) | 13.2028(4) | 19.2400(7) |
α (°) | 90 | 90 |
β (°) | 94.4523(13) | 95.0350(10) |
γ (°) | 90 | 90 |
Volume (Å3) | 1599.72(9) | 3377.3(2) |
Z | 4 | 4 |
ρcalc (g/cm−3) | 1.726 | 2.092 |
µ (mm−1) | 7.211 | 10.220 |
F (000) | 800 | 2008 |
2θ range for data collection (°) | 2.233−24.999 | 3.197–33.157 |
Independent reflections | 2813 | 12852 |
Final R indices [I ≥ 2σ (I)] | R1 = 0.0196, wR2 = 0.0518 | R1 = 0.0388, wR2 = 0.0621 |
Parameters | 200 | 397 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohapatra, S.; Gayen, S.; Shyamal, S.; Halet, J.-F.; Ghosh, S. Synthesis, Structure and Bonding of the Tungstaboranes [Cp*W(CO)2B3H8] and [(Cp*W)3(CO)2B4H7]. Inorganics 2023, 11, 248. https://doi.org/10.3390/inorganics11060248
Mohapatra S, Gayen S, Shyamal S, Halet J-F, Ghosh S. Synthesis, Structure and Bonding of the Tungstaboranes [Cp*W(CO)2B3H8] and [(Cp*W)3(CO)2B4H7]. Inorganics. 2023; 11(6):248. https://doi.org/10.3390/inorganics11060248
Chicago/Turabian StyleMohapatra, Stutee, Sourav Gayen, Sampad Shyamal, Jean-François Halet, and Sundargopal Ghosh. 2023. "Synthesis, Structure and Bonding of the Tungstaboranes [Cp*W(CO)2B3H8] and [(Cp*W)3(CO)2B4H7]" Inorganics 11, no. 6: 248. https://doi.org/10.3390/inorganics11060248
APA StyleMohapatra, S., Gayen, S., Shyamal, S., Halet, J. -F., & Ghosh, S. (2023). Synthesis, Structure and Bonding of the Tungstaboranes [Cp*W(CO)2B3H8] and [(Cp*W)3(CO)2B4H7]. Inorganics, 11(6), 248. https://doi.org/10.3390/inorganics11060248