Modeling the Eu(III)-to-Cr(III) Energy Transfer Rates in Luminescent Bimetallic Complexes
Abstract
1. Introduction
2. Theoretical Methodology
3. Selected Case
4. Results and Discussion
4.1. Multipolar Energy Transfer Rates
4.2. Exchange Energy Transfer Rates
4.3. Phonon-Assisted Energy Transfer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Bettencourt-Dias, A. Lanthanide-based emitting materials in light-emitting diodes. Dalton Trans. 2007, 22, 2229–2241. [Google Scholar] [CrossRef]
- Fang, M.; Neto, A.N.C.; Fu, L.; Ferreira, R.A.S.; deZeaBermudez, V.; Carlos, L.D. A Hybrid Materials Approach for Fabricating Efficient WLEDs Based on Di-Ureasils Doped with Carbon Dots and a Europium Complex. Adv. Mater. Technol. 2021, 7, 2100727. [Google Scholar] [CrossRef]
- Ou, X.; Qin, X.; Huang, B.; Zan, J.; Wu, Q.; Hong, Z.; Xie, L.; Bian, H.; Yi, Z.; Chen, X.; et al. High-resolution X-ray luminescence extension imaging. Nature 2021, 590, 410–415. [Google Scholar] [CrossRef]
- Neto, A.N.C.; Malta, O.L. Glowing nanocrystals enable 3D X-ray imaging. Nature 2021, 590, 396–397. [Google Scholar] [CrossRef]
- Piñol, R.; Zeler, J.; Brites, C.D.S.; Gu, Y.; Téllez, P.; Neto, A.N.C.; Da Silva, T.E.; Moreno-Loshuertos, R.; Fernandez-Silva, P.; Gallego, A.I.; et al. Real-Time Intracellular Temperature Imaging Using Lanthanide-Bearing Polymeric Micelles. Nano Lett. 2020, 20, 6466–6472. [Google Scholar] [CrossRef]
- Cotruvo, J.A. The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications. ACS Central Sci. 2019, 5, 1496–1506. [Google Scholar] [CrossRef]
- Faulkner, S.; Blackburn, O.A. The Chemistry of Lanthanide MRI Contrast Agents. In The Chemistry of Molecular Imaging; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2014; pp. 179–197. [Google Scholar]
- Perrier, M.; Gallud, A.; Ayadi, A.; Kennouche, S.; Porredon, C.; Gary-Bobo, M.; Larionova, J.; Goze-Bac, C.; Zanca, M.; Garcia, M.; et al. Investigation of cyano-bridged coordination nanoparticles Gd3+/[Fe(CN)6]3−/d-mannitol as T1-weighted MRI contrast agents. Nanoscale 2015, 7, 11899–11903. [Google Scholar] [CrossRef]
- Ramalho, J.F.; Neto, A.N.C.; Carlos, L.D.; André, P.S.; Ferreira, R.A. Lanthanides for the new generation of optical sensing and Internet of Things. In Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J.-C.G., Pecharsky, V.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 31–128. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Millán, A.; Carlos, L.D. Lanthanides in Luminescent Thermometry. In Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J.-C.G., Pecharsky, V.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 49, pp. 339–427. [Google Scholar]
- Salerno, E.V.; Neto, A.N.C.; Eliseeva, S.V.; Hernández-Rodríguez, M.A.; Lutter, J.C.; Lathion, T.; Kampf, J.W.; Petoud, S.; Carlos, L.D.; Pecoraro, V.L. Tunable Optical Molecular Thermometers Based on Metallacrowns. J. Am. Chem. Soc. 2022, 144, 18259–18271. [Google Scholar] [CrossRef]
- De Souza, K.M.N.; Silva, R.N.; Silva, J.A.B.; Brites, C.D.S.; Francis, B.; Ferreira, R.A.S.; Carlos, L.D.; Longo, R.L. Novel and High-Sensitive Primary and Self-Referencing Thermometers Based on the Excitation Spectra of Lanthanide Ions. Adv. Opt. Mater. 2022, 10, 2200770. [Google Scholar] [CrossRef]
- Sun, L.; Shi, L. Lanthanides: Near-Infrared Materials. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2012. [Google Scholar]
- Cho, U.; Chen, J.K. Lanthanide-Based Optical Probes of Biological Systems. Cell Chem. Biol. 2020, 27, 921–936. [Google Scholar] [CrossRef]
- Rocha, U.; Kumar, K.U.; Jacinto, C.; Villa, I.; Sanz-Rodríguez, F.; del Carmen Iglesias de la Cruz, M.; Juarranz, A.; Carrasco, E.; van Veggel, F.C.J.M.; Bovero, E.; et al. Neodymium-Doped LaF3Nanoparticles for Fluorescence Bioimaging in the Second Biological Window. Small 2013, 10, 1141–1154. [Google Scholar] [CrossRef]
- Sábio, R.M.; Santagneli, S.H.; Gressier, M.; Caiut, J.M.A.; Pazin, W.M.; Leite, I.S.; Inada, N.M.; da Silva, R.R.; Ribeiro, S.J.L.; Menu, M.-J. Luminescent nanohybrids based on silica and silylated Ru(II)—Yb(III) heterobinuclear complex: New tools for biological media analysis. Nanotechnology 2019, 31, 085709. [Google Scholar] [CrossRef]
- Ward, M.D. Transition-metal sensitised near-infrared luminescence from lanthanides in d–f heteronuclear arrays. Coord. Chem. Rev. 2007, 251, 1663–1677. [Google Scholar] [CrossRef]
- Chen, F.-F.; Chen, Z.-Q.; Bian, Z.-Q.; Huang, C.-H. Sensitized luminescence from lanthanides in d–f bimetallic complexes. Coord. Chem. Rev. 2010, 254, 991–1010. [Google Scholar] [CrossRef]
- Back, M.; Ueda, J.; Nambu, H.; Fujita, M.; Yamamoto, A.; Yoshida, H.; Tanaka, H.; Brik, M.G.; Tanabe, S. Boltzmann Thermometry in Cr3+ -Doped Ga2 O 3 Polymorphs: The Structure Matters! Adv. Opt. Mater. 2021, 9, 2100033. [Google Scholar] [CrossRef]
- Malysa, B.; Meijerink, A.; Jüstel, T. Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La). J. Lumin. 2018, 202, 523–531. [Google Scholar] [CrossRef]
- Back, M.; Ueda, J.; Brik, M.G.; Tanabe, S. Pushing the Limit of Boltzmann Distribution in Cr3+-Doped CaHfO3 for Cryogenic Thermometry. ACS Appl. Mater. Interfaces 2020, 12, 38325–38332. [Google Scholar] [CrossRef]
- Back, M.; Ueda, J.; Hua, H.; Tanabe, S. Predicting the Optical Pressure Sensitivity of 2E→4A2Spin-Flip Transition in Cr3+-Doped Crystals. Chem. Mater. 2021, 33, 3379–3385. [Google Scholar] [CrossRef]
- Shen, Y.; Grinberg, M.; Barzowska, J.; Bray, K.; Hanuza, J.; Dereń, P. The effect of pressure on luminescence properties of Cr3+ ions in LiSc(WO4)2 crystals—Part I: Pressure dependent emission lineshape. J. Lumin. 2006, 116, 1–14. [Google Scholar] [CrossRef]
- Grinberg, M.; Barzowska, J.; Shen, Y.; Bray, K.; Hanuza, J.; Dereń, P. The effect of pressure on luminescence properties of Cr3+ ions in LiSc(WO4)2 crystals—Part II: Pressure- and temperature-dependent luminescence kinetics. J. Lumin. 2006, 116, 15–27. [Google Scholar] [CrossRef]
- Szymczak, M.; Woźny, P.; Runowski, M.; Pieprz, M.; Lavín, V.; Marciniak, L. Temperature invariant ratiometric luminescence manometer based on Cr3+ ions emission. Chem. Eng. J. 2023, 453, 139632. [Google Scholar] [CrossRef]
- Ward, M.D. Mechanisms of sensitization of lanthanide(III)-based luminescence in transition metal/lanthanide and anthracene/lanthanide dyads. Coord. Chem. Rev. 2010, 254, 2634–2642. [Google Scholar] [CrossRef]
- Lazarides, T.; Davies, G.M.; Adams, H.; Sabatini, C.; Barigelletti, F.; Barbieri, A.; Pope, S.J.A.; Faulkner, S.; Ward, M.D. Ligand-field excited states of hexacyanochromate and hexacyanocobaltate as sensitisers for near-infrared luminescence from Nd(III) and Yb(III) in cyanide-bridged d–f assemblies. Photochem. Photobiol. Sci. 2007, 6, 1152–1157. [Google Scholar] [CrossRef]
- Chen, F.-F.; Wei, H.-B.; Bian, Z.-Q.; Liu, Z.-W.; Ma, E.; Chen, Z.-N.; Huang, C.-H. Sensitized Near-Infrared Emission from IrIII-LnIII (Ln = Nd, Yb, Er) Bimetallic Complexes with a (N∧O)(N∧O) Bridging Ligand. Organometallics 2014, 33, 3275–3282. [Google Scholar] [CrossRef]
- Crowston, B.J.; Shipp, J.D.; Chekulaev, D.; McKenzie, L.K.; Jones, C.; Weinstein, J.A.; Meijer, A.J.H.; Bryant, H.E.; Natrajan, L.; Woodward, A.; et al. Heteronuclear d–d and d–f Ru(II)/M complexes [M = Gd(III), Yb(III), Nd(III), Zn(II) or Mn(II)] of ligands combining phenanthroline and aminocarboxylate binding sites: Combined relaxivity, cell imaging and photophysical studies. Dalton Trans. 2019, 48, 6132–6152. [Google Scholar] [CrossRef]
- Singaravadivel, S.; Velayudham, M.; Babu, E.; Mareeswaran, P.M.; Lu, K.-L.; Rajagopal, S. Sensitized Near-Infrared Luminescence From NdIII, YbIII and ErIII Complexes by Energy-Transfer From Ruthenium 1,3-Bis([1,10]Phenanthroline-[5,6-d]-Imidazol-2-yl)Benzene. J. Fluoresc. 2013, 23, 1167–1172. [Google Scholar] [CrossRef]
- Forster, T. Energiewanderung und Fluoreszenz. Naturwissenschaften 1946, 33, 166–175. [Google Scholar] [CrossRef]
- Dexter, D.L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21, 836–850. [Google Scholar] [CrossRef]
- Lazarides, T.; Sykes, D.; Faulkner, S.; Barbieri, A.; Ward, M.D. On the Mechanism of d-f Energy Transfer in RuII/LnIIIand OsII/LnIIIDyads: Dexter-Type Energy Transfer Over a Distance of 20 Å. Chem.–A Eur. J. 2008, 14, 9389–9399. [Google Scholar] [CrossRef]
- Carneiro Neto, A.N.; Teotonio, E.E.S.; de Sá, G.F.; Brito, H.F.; Legendziewicz, J.; Carlos, L.D.; Felinto, M.C.F.C.; Gawryszewska, P.; Moura, R.T., Jr.; Longo, R.L.; et al. Modeling Intramolecular Energy Transfer in Lanthanide Chelates: A Critical Review and Recent Advances. In Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J.-C.G., Pecharsky, V.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 56, pp. 55–162. ISBN 9780444642998. [Google Scholar]
- Shyichuk, A.; Câmara, S.S.; Weber, I.T.; Neto, A.N.C.; Nunes, L.A.; Lis, S.; Longo, R.L.; Malta, O.L. Energy transfer upconversion dynamics in YVO4:Yb3+, Er3+. J. Lumin. 2016, 170, 560–570. [Google Scholar] [CrossRef]
- Malta, O. Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. J. Non-Cryst. Solids 2008, 354, 4770–4776. [Google Scholar] [CrossRef]
- Carneiro Neto, A.N.; Moura, R.T.; Shyichuk, A.; Paterlini, V.; Piccinelli, F.; Bettinelli, M.; Malta, O.L. Theoretical and Experimental Investigation of the Tb3+ → Eu3+ Energy Transfer Mechanisms in Cubic A3Tb0.90Eu0.10(PO4)3 (A = Sr, Ba) Materials. J. Phys. Chem. C 2020, 124, 10105–10116. [Google Scholar] [CrossRef]
- Trannoy, V.; Neto, A.N.C.; Brites, C.D.S.; Carlos, L.D.; Serier-Brault, H. Engineering of Mixed Eu3+/Tb3+ Metal-Organic Frameworks Luminescent Thermometers with Tunable Sensitivity. Adv. Opt. Mater. 2021, 9, 2001938. [Google Scholar] [CrossRef]
- Malta, O. Ligand—Rare-earth ion energy transfer in coordination compounds. A theoretical approach. J. Lumin. 1997, 71, 229–236. [Google Scholar] [CrossRef]
- E Silva, F.R.; Malta, O. Calculation of the ligand–lanthanide ion energy transfer rate in coordination compounds: Contributions of exchange interactions. J. Alloys Compd. 1997, 250, 427–430. [Google Scholar] [CrossRef]
- Neto, A.N.C.; Moura, R.T.; Malta, O.L. On the mechanisms of non-radiative energy transfer between lanthanide ions: Centrosymmetric systems. J. Lumin. 2019, 210, 342–347. [Google Scholar] [CrossRef]
- Gomez, G.E.; Marin, R.; Neto, A.N.C.; Botas, A.M.P.; Ovens, J.; Kitos, A.A.; Bernini, M.C.; Carlos, L.D.; Soler-Illia, G.J.A.A.; Murugesu, M. Tunable energy transfer process in heterometallic MOFs materials based on 2,6-naphtalenedicarboxylate: Solid-state lighting and near-infrared luminescence thermometry. Chem. Mater. 2020, 32, 7458–7468. [Google Scholar] [CrossRef]
- Neto, A.N.C.; Mamontova, E.; Botas, A.M.P.; Brites, C.D.S.; Ferreira, R.A.S.; Rouquette, J.; Guari, Y.; Larionova, J.; Long, J.; Carlos, L.D. Rationalizing the Thermal Response of Dual-Center Molecular Thermometers: The Example of an Eu/Tb Coordination Complex. Adv. Opt. Mater. 2021, 10, 2101870. [Google Scholar] [CrossRef]
- Lyubov, D.M.; Neto, A.N.C.; Fayoumi, A.; Lyssenko, K.A.; Korshunov, V.M.; Taydakov, I.V.; Salles, F.; Guari, Y.; Larionova, J.; Carlos, L.D.; et al. Employing three-blade propeller lanthanide complexes as molecular luminescent thermometers: Study of temperature sensing through a concerted experimental/theory approach. J. Mater. Chem. C 2022, 10, 7176–7188. [Google Scholar] [CrossRef]
- Ramalho, J.F.C.B.; Dias, L.M.S.; Fu, L.; Botas, A.M.P.; Carlos, L.D.; Neto, A.N.C.; André, P.S.; Ferreira, R.A.S. Customized Luminescent Multiplexed Quick-Response Codes as Reliable Temperature Mobile Optical Sensors for eHealth and Internet of Things. Adv. Photonics Res. 2021, 3, 2100206. [Google Scholar] [CrossRef]
- Cantuel, M.; Bernardinelli, G.; Imbert, D.; Bünzli, J.-C.G.; Hopfgartner, G.; Piguet, C. A kinetically inert and optically active CrIII partner in thermodynamically self-assembled heterodimetallic non-covalent d–f podates. J. Chem. Soc. Dalton Trans. 2002, 9, 1929–1940. [Google Scholar] [CrossRef]
- Carnall, W.T.; Crosswhite, H.; Crosswhite, H.M. Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF₃; Argonne: Lemont, IL, USA, 1978. [Google Scholar]
- Edvardsson, S.; Klintenberg, M. Role of the electrostatic model in calculating rare-earth crystal-field parameters. J. Alloys Compd. 1998, 275, 230–233. [Google Scholar] [CrossRef]
- Silver, B.L. Irreducible Tensor Methods; ACADEMIC PRESS, INC.: London, UK, 1976; ISBN 0-12-643650-9. [Google Scholar]
- Judd, B.R. Operator Techniques in Atomic Spectroscopy; McGraw-Hill Book Company: New York, NY, USA, 1998; ISBN 9780691604275. [Google Scholar]
- Neto, A.N.C.; Moura, R.T., Jr. Overlap integrals and excitation energies calculations in trivalent lanthanides 4f orbitals in pairs Ln-L (L = Ln, N, O, F, P, S, Cl, Se, Br, and I). Chem. Phys. Lett. 2020, 757, 137884. [Google Scholar] [CrossRef]
- Moura, R.T., Jr.; Neto, A.N.C.; Aguiar, E.C.; Santos-Jr., C.V.; de Lima, E.M.; Faustino, W.M.; Teotonio, E.E.; Brito, H.F.; Felinto, M.C.; Ferreira, R.A.; et al. (INVITED) JOYSpectra: A web platform for luminescence of lanthanides. Opt. Mater. X 2021, 11, 100080. [Google Scholar] [CrossRef]
- Carneiro Neto, A.N.; Moura, R.T., Jr.; Coelho, J.A.A.; Silva-Junior, M.E.; Costa, J.L.; Malta, O.L.; Longo, R.L. A Tutorial Review on the Nonradiative Energy Transfer Rates between Lanthanide Ions. Chin. J. Lumin. 2022, 43, 20. [Google Scholar] [CrossRef]
- Miyakawa, T.; Dexter, D.L. Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids. Phys. Rev. B 1970, 1, 2961–2969. [Google Scholar] [CrossRef]
- Golesorkhi, B.; Taarit, I.; Bolvin, H.; Nozary, H.; Jiménez, J.-R.; Besnard, C.; Guénée, L.; Fürstenberg, A.; Piguet, C. Molecular light-upconversion: We have had a problem! When excited state absorption (ESA) overcomes energy transfer upconversion (ETU) in Cr(III)/Er(III) complexes. Dalton Trans. 2021, 50, 7955–7968. [Google Scholar] [CrossRef]
- Rohatgi, A. WebPlotDigitizer 2021. Available online: https://automeris.io/WebPlotDigitizer/ (accessed on 6 September 2022).
- Judd, B.R. Optical Absorption Intensities of Rare-Earth Ions. Phys. Rev. 1962, 127, 750–761. [Google Scholar] [CrossRef]
- Ofelt, G.S. Intensities of Crystal Spectra of Rare-Earth Ions. J. Chem. Phys. 1962, 37, 511–520. [Google Scholar] [CrossRef]
- Smentek, L.; Ke¸dziorski, A. Efficiency of the energy transfer in lanthanide-organic chelates; spectral overlap integral. J. Lumin. 2010, 130, 1154–1159. [Google Scholar] [CrossRef]
- Milos, M.; Kairouani, S.; Rabaste, S.; Hauser, A. Energy migration within the 2E state of Cr3+. Coord. Chem. Rev. 2008, 252, 2540–2551. [Google Scholar] [CrossRef]
- Dexpert-Ghys, J.; Auzel, F. Existence of cooperative absorption lines for Yb–(OH,OD) pairs: Absolute oscillator strengths. J. Chem. Phys. 1984, 80, 4003–4012. [Google Scholar] [CrossRef]
- Donega, C.D.M.; Meijerink, A.; Blasse, G. Vibronic transition probabilities in the excitation spectra of the Pr3+ion. J. Physics: Condens. Matter 1992, 4, 8889–8902. [Google Scholar] [CrossRef]
- Yamada, N.; Shionoya, S.; Kushida, T. Phonon-Assisted Energy Transfer between Trivalent Rare Earth Ions. J. Phys. Soc. Jpn. 1972, 32, 1577–1586. [Google Scholar] [CrossRef]
- Fonger, W.; Struck, C. Unified model of energy transfer for arbitrary Franck-Condon offset and temperature. J. Lumin. 1978, 17, 241–261. [Google Scholar] [CrossRef]
- Auzel, F.; De Sa’, G.; de Azevedo, W. An example of concentration sensitive electron-phonon coupling in {(C4H9)4N}3 EuxY1−x(NCS)6 and a new hypothesis for self-quenching. J. Lumin. 1980, 21, 187–192. [Google Scholar] [CrossRef]
- Blasse, G. Luminescence of inorganic solids: From isolated centres to concentrated systems. Prog. Solid State Chem. 1988, 18, 79–171. [Google Scholar] [CrossRef]
- Nie, W.; Boulon, G.; Monteil, A. Vibronic levels and zero-phonon lines of Cr3+—doped yttrium aluminium garnet (Y3Al5O12). J. Phys. 1989, 50, 3309–3315. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kieml, D.J. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons: New York, NY, USA, 2005; ISBN 0-471-39362-2. [Google Scholar]
- Reinhard, C.; Güdel, H.U. High-Resolution Optical Spectroscopy of Na3[Ln(dpa)3]·13H2O with Ln = Er3+, Tm3+, Yb3+. Inorg. Chem. 2002, 41, 1048–1055. [Google Scholar] [CrossRef]
- Costa, I.F.; Blois, L.; Carneiro Neto, A.N.; Teotonio, E.E.S.; Brito, H.F.; Carlos, L.D.; Felinto, M.C.F.C.; Moura, R.T., Jr.; Longo, R.L.; Faustino, W.M.; et al. Reinterpreting the Judd–Ofelt Parameters Based on Recent Theoretical Advances. In Luminescent Materials: Fundamentals and Applications; Brik, M.G., Srivastava, A.M., Eds.; De Gruyter: Berlin, Germany, 2023; pp. 19–62. [Google Scholar]
Pathway | Donor | Aceptor | (cm−1) | (erg−1) | (s−1) | (s−1) | (s−1) |
---|---|---|---|---|---|---|---|
1 | 5D0 → 7F2 | 2E ← 4A2 | 2748 | 1 × 10−11 | 1 × 10−22 | 3 × 10−20 | 3 × 10−20 |
2 | 5D0 → 7F4 | 2E ← 4A2 | 982 | 7 × 109 | 4 × 10−2 | 3 × 10−3 | 4 × 10−2 |
3 | 5D0 → 7F6 | 2E ← 4A2 | −1032 | 2 × 107 | 3 × 10−5 | 5 × 10−10 | 3 × 10−5 |
4 | 5D0 → 7F2 | 2T1 ← 4A2 | 2026 | 2 × 106 | 7 × 10−6 | 3 × 10−3 | 3 × 10−3 |
5 | 5D0 → 7F4 | 2T1 ← 4A2 | 260 | 4 × 1012 | 20 | 1 | 21 |
6 | 5D0 → 7F6 | 2T1 ← 4A2 | −1754 | 2 × 104 | 1 × 10−8 | 2 × 10−13 | 1 × 10−8 |
21 |
Pathway | Donor | (cm−1) | (erg−1) | (s−1) | (s−1) | (s−1) |
---|---|---|---|---|---|---|
1 | 5D0 → 7F2 | 2239 | 4 × 1010 | 4 × 10−1 | 98 | 98 |
2 | 5D0 → 7F4 | 470 | 2 × 1012 | 11 | 8 × 10−1 | 11 |
3 | 5D0 → 7F6 | −1541 | 2 × 108 | 2 × 10−4 | 4 × 10−9 | 2 × 10−4 |
109 |
0.01 | 0.85 | 4.1 | 3.4 | 927.6 | 931.0 |
0.01 | 0.90 | 4.3 | 3.6 | 987.9 | 991.5 |
0.01 | 0.95 | 4.6 | 3.8 | 1046.8 | 1050.6 |
0.01 | 1.00 | 4.8 | 4.0 | 1101.2 | 1105.2 |
0.04 | 0.85 | 4.2 | 3.5 | 964.1 | 967.6 |
0.04 | 0.90 | 4.5 | 3.8 | 1023.0 | 1026.8 |
0.04 | 0.95 | 4.7 | 4.0 | 1079.4 | 1083.4 |
0.04 | 1.00 | 4.9 | 4.2 | 1133.0 | 1137.2 |
0.08 | 0.85 | 4.4 | 3.7 | 1011.4 | 1015.1 |
0.08 | 0.90 | 4.7 | 3.9 | 1068.3 | 1072.2 |
0.08 | 0.95 | 4.9 | 4.1 | 1122.5 | 1126.6 |
0.08 | 1.00 | 5.1 | 4.3 | 1174.0 | 1178.3 |
0.10 | 0.85 | 4.5 | 3.8 | 1034.5 | 1038.3 |
0.10 | 0.90 | 4.8 | 4.0 | 1090.3 | 1094.3 |
0.10 | 0.95 | 5.0 | 4.2 | 1143.4 | 1147.6 |
0.10 | 1.00 | 5.2 | 4.4 | 1193.7 | 1198.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, J.A.A.; Moura, R.T., Jr.; Longo, R.L.; Malta, O.L.; Carneiro Neto, A.N. Modeling the Eu(III)-to-Cr(III) Energy Transfer Rates in Luminescent Bimetallic Complexes. Inorganics 2023, 11, 38. https://doi.org/10.3390/inorganics11010038
Coelho JAA, Moura RT Jr., Longo RL, Malta OL, Carneiro Neto AN. Modeling the Eu(III)-to-Cr(III) Energy Transfer Rates in Luminescent Bimetallic Complexes. Inorganics. 2023; 11(1):38. https://doi.org/10.3390/inorganics11010038
Chicago/Turabian StyleCoelho, Jorge A. A., Renaldo T. Moura, Jr., Ricardo L. Longo, Oscar L. Malta, and Albano N. Carneiro Neto. 2023. "Modeling the Eu(III)-to-Cr(III) Energy Transfer Rates in Luminescent Bimetallic Complexes" Inorganics 11, no. 1: 38. https://doi.org/10.3390/inorganics11010038
APA StyleCoelho, J. A. A., Moura, R. T., Jr., Longo, R. L., Malta, O. L., & Carneiro Neto, A. N. (2023). Modeling the Eu(III)-to-Cr(III) Energy Transfer Rates in Luminescent Bimetallic Complexes. Inorganics, 11(1), 38. https://doi.org/10.3390/inorganics11010038