Yttrium and Lithium Complexes with Diamidophosphane Ligand Bearing 2,1,3-Benzothiazolyl Substituent: Polydentate Complexation and Reversible NH–PH Tautomery
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structures of Li Salts
2.2. Synthesis and Structures of Y Complexes
2.3. UV-Vis Spectroscopy and TD-DFT Calculations
3. Materials and Methods
3.1. General Methods
3.2. Quantum Chemical Calculations
3.3. X-ray Structure Determination
3.4. Syntheses
3.4.1. Synthesis of [Li(PhP(H)(NBtd)2]2·Et2O (22·Et2O)
3.4.2. Reaction of H2L with Two Equivalents of Li(NTms2)
3.4.3. Reaction of H2L with One Equivalent of Y(NTms2)3. Crystallization of [Y(PhPOx(NBtd)2)(NTms2)]2·Et2O (42·Et2O)
3.4.4. Synthesis of [Y(PhP(H)(NBtd)2)(PhP(NBtd)2)] (5)
3.4.5. Synthesis of [Li(thf)4][Y(PhP(NBtd)2)2]·thf (6·thf)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deacon, G.B.; Hossain, M.E.; Junk, P.C.; Salehisaki, M. Rare-earth N,N′-diarylformamidinate complexes. Coord. Chem. Rev. 2017, 340, 247–265. [Google Scholar] [CrossRef]
- Devi, A. ‘Old Chemistries’ for new applications: Perspectives for development of precursors for MOCVD and ALD applications. Coord. Chem. Rev. 2013, 257, 3332–3384. [Google Scholar] [CrossRef]
- Edelmann, F.T. Lanthanide amidinates and guanidinates in catalysis and materials science: A continuing success story. Chem. Soc. Rev. 2012, 41, 7657–7672. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, A.A. Guanidinate and amidopyridinate rare-earth complexes: Towards highly reactive alkyl and hydrido species. Coord. Chem. Rev. 2010, 254, 1327–1347. [Google Scholar] [CrossRef]
- Edelmann, F.T. Lanthanide amidinates and guanidinates: From laboratory curiosities to efficient homogeneous catalysts and precursors for rare-earth oxide thin films. Chem. Soc. Rev. 2009, 38, 2253–2268. [Google Scholar] [CrossRef]
- Edelmann, F.T. N-silylated benzamidines: Versatile building blocks in main group and coordination chemistry. Coord. Chem. Rev. 1994, 137, 403–481. [Google Scholar] [CrossRef]
- Hill, A.F.; Fink, M.J. (Eds.) Chapter 3—Advances in the Coordination Chemistry of Amidinate and Guanidinate Ligands; Elsevier: Amsterdam: The Netherlands; Academic Press: Boston, MA, USA, 2008; Volume 57. [Google Scholar]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database; CSD version 5.42, November 2020. Acta Crystallogr. B 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, D.; Zhang, Y.; Wei, Y.; Zhou, S.; Xu, M.; Wang, S.; Yang, Y.; Qi, Y. Synthesis of Carbamoylphosphates from Isocyanates Catalyzed by Rare-Earth-Metal Alkyl Complexes with a Silicon-Linked Diarylamido Ligand. Organometallics 2020, 39, 4584–4591. [Google Scholar] [CrossRef]
- Shi, Y.; Li, J.; Cui, C. Synthesis of divalent ytterbium terphenylamide and catalytic application for regioselective hydrosilylation of alkenes. Dalton Trans. 2017, 46, 10957–10962. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, D.; Yang, H.; Li, J.; Cui, C. Yttrium dialkyl supported by a silaamidinate ligand. Chem. Commun. 2019, 55, 12324–12327. [Google Scholar] [CrossRef]
- Bubrin, D.; Niemeyer, M. Formation of novel T-shaped NNN ligands via rare-earth metal-mediated Si-H activation. Inorg. Chem. 2014, 53, 1269–1271. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.-L.; Sheng, S.-D.; Hou, C.-M.; Pan, Y.-S.; Wang, J.; Fan, Y. A New Type of Lanthanide Complex—Two Divalent Ytterbium Species Assembled from Cation–π Interactions. Eur. J. Inorg. Chem. 2012, 2012, 779–782. [Google Scholar] [CrossRef]
- Buffet, J.-C.; Okuda, J. Scandium alkyl and amide complexes containing a cyclen-derived (NNNN) macrocyclic ligand. Dalton Trans. 2011, 40, 7748–7754. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.-L.; Chen, W.; Song, S.; Zhang, H.; Li, X. Stabilization of imidosamarium(III) cubane by amidinates. Inorg. Chem. 2009, 48, 6344–6346. [Google Scholar] [CrossRef]
- Bambirra, S.; Meetsma, A.; Hessen, B.; Bruins, A.P. Cationic Group 3 Alkyl Complexes with Isopropyl-Substituted Triazacyclononane-amide Ligands. Organometallics 2006, 25, 3486–3495. [Google Scholar] [CrossRef] [Green Version]
- Mironova, O.A.; Lashchenko, D.I.; Ryadun, A.A.; Sukhikh, T.S.; Bashirov, D.A.; Pushkarevsky, N.A.; Konchenko, S.N. Synthesis and photophysical properties of rare earth complexes bearing silanediamido ligands Me2Si(NAryl)22– (Aryl = Dipp, Mes). New J. Chem. 2022, 46, 2351–2359. [Google Scholar] [CrossRef]
- Recknagel, A.; Steiner, A.; Noltemeyer, M.; Brooker, S.; Stalke, D.; Edelmann, F.T. Diiminophosphinate des Lithiums, Samariums und Ytterbiums. J. Organomet. Chem. 1991, 414, 327–335. [Google Scholar] [CrossRef]
- Rufanov, K.A.; Pruß, N.K.; Sundermeyer, J. Simple entry into N-tert-butyl-iminophosphonamide rare-earth metal alkyl and chlorido complexes. Dalton Trans. 2016, 45, 1525–1538. [Google Scholar] [CrossRef]
- Li, N.; Guan, B.-T. Yttrium-Benzyl Complexes Bearing Chiral Iminophosphonamide Ligands. Adv. Synth. Catal. 2017, 359, 3526–3531. [Google Scholar] [CrossRef]
- Liu, B.; Sun, G.; Li, S.; Liu, D.; Cui, D. Isoprene Polymerization with Iminophosphonamide Rare-Earth-Metal Alkyl Complexes. Organometallics 2015, 34, 4063–4068. [Google Scholar] [CrossRef]
- Liu, B.; Li, L.; Sun, G.; Liu, J.; Wang, M.; Li, S.; Cui, D. 3,4-Polymerization of Isoprene by Using NSN- and NPN-Ligated Rare Earth Metal Precursors. Macromolecules 2014, 47, 4971–4978. [Google Scholar] [CrossRef]
- Li, S.; Cui, D.; Li, D.; Hou, Z. Highly 3,4-Selective Polymerization of Isoprene with NPN Ligand Stabilized Rare-Earth Metal Bis(alkyl)s. Structures and Performances. Organometallics 2009, 28, 4814–4822. [Google Scholar] [CrossRef]
- Li, S.; Miao, W.; Tang, T.; Dong, W.; Zhang, X.; Cui, D. New Rare Earth Metal Bis(alkyl)s Bearing an Iminophosphonamido Ligand. Synthesis and Catalysis toward Highly 3,4-Selective Polymerization of Isoprene. Organometallics 2008, 27, 718–725. [Google Scholar] [CrossRef]
- Vrána, J.; Jambor, R.; Růžička, A.; Alonso, M.; Proft, F.; Lyčka, A.; Dostál, L. Reactivity of bis(organoamino)phosphanes with magnesium(II) compounds. Dalton Trans. 2015, 44, 4533–4545. [Google Scholar] [CrossRef] [PubMed]
- Vrána, J.; Jambor, R.; Růžička, A.; Alonso, M.; Proft, F.; Dostál, L. Reactivity of Bis(organoamino)phosphanes with Aluminum(III) Compounds. Eur. J. Inorg. Chem. 2014, 2014, 5193–5203. [Google Scholar] [CrossRef]
- Khisamov, R.; Sukhikh, T.; Bashirov, D.; Ryadun, A.; Konchenko, S. Structural and Photophysical Properties of 2,1,3-Benzothiadiazole-Based Phosph(III)azane and Its Complexes. Molecules 2020, 25, 2428. [Google Scholar] [CrossRef]
- He, Y.; Wang, Q.; Jing, X.; Zhao, Y.; Gao, C.; Zhai, X.; Wang, X.; Yu, L.; Sun, M. Simple benzothiadiazole-based small molecules as additives for efficient organic solar cells. Org. Electron. 2022, 101, 106424. [Google Scholar] [CrossRef]
- Tanaka, E.; Mikhailov, M.S.; Gudim, N.S.; Knyazeva, E.A.; Mikhalchenko, L.V.; Robertson, N.; Rakitin, O.A. Structural features of indoline donors in D-A-pi-A type organic sensitizers for dye-sensitized solar cells. Mol. Syst. Des. Eng. 2021, 6, 730–738. [Google Scholar] [CrossRef]
- Ceriani, C.; Corsini, F.; Mattioli, G.; Mattiello, S.; Testa, D.; Po, R.; Botta, C.; Griffini, G.; Beverina, L. Sustainable by design, large Stokes shift benzothiadiazole derivatives for efficient luminescent solar concentrators. J. Mater. Chem. C 2021, 9, 14815–14826. [Google Scholar] [CrossRef]
- Neto, B.A.D.; Correa, J.R.; Spencer, J. Fluorescent Benzothiadiazole Derivatives as Fluorescence Imaging Dyes: A Decade of New Generation Probes. Chem. Eur. J. 2022, 28, e202103262. [Google Scholar] [CrossRef]
- Sukhikh, T.S.; Ogienko, D.S.; Bashirov, D.A.; Konchenkoa, S.N. Luminescent complexes of 2,1,3-benzothiadiazole derivatives. Russ. Chem. Bull. 2019, 68, 651–661. [Google Scholar] [CrossRef]
- Vrána, J.; Jambor, R.; Růžička, A.; Dostál, L. New synthetic strategies leading to RNPNR- anions and the isolation of the P(Nt-Bu)33- trianion. Dalton Trans. 2018, 47, 8434–8441. [Google Scholar] [CrossRef] [PubMed]
- Eichhorn, B.; Nöth, H.; Seifert, T. (N-lithioamino)diorganophosphanes and Bis(N-Lithioamino)organophosphanes. Eur. J. Inorg. Chem. 1999, 1999, 2355–2368. [Google Scholar] [CrossRef]
- Kolodiazhnyi, O.I.; Prynada, N. Alkylamides of trivalent phosphorus-acids. Tetrahedron Lett. 2000, 41, 7997–8000. [Google Scholar] [CrossRef]
- Chase, P.A.; Lutz, M.; Spek, A.L.; Gossage, R.A.; van Koten, G. Solid-state and solution structures of hetero-aggregates formed between nBuLi and NCN pincer aryl lithium. Dalton Trans. 2008, 37, 5783–5790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, W.A. (Ed.) . Synthetic Methods of Organometallic and Inorganic Chemistry (Herrmann/Brauer). Volume 6—Lanthanides and Actinides; Georg Thieme Verlag KG: Stuttgart, Germany, 1997. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA Program System—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Helmich-Paris, B.; de Souza, B.; Neese, F.; Izsák, R. An improved chain of spheres for exchange algorithm. J. Chem. Phys. 2021, 155, 104109. [Google Scholar] [CrossRef]
- Izsák, R.; Neese, F.; Klopper, W. Robust fitting techniques in the chain of spheres approximation to the Fock exchange: The role of the complementary space. J. Chem. Phys. 2013, 139, 094111. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Hitchcock, P.B.; Hulkes, A.G.; Lappert, M.F.; Li, Z. Cerium(iii) dialkyl dithiocarbamates from [Ce{N(SiMe3)2}3] and tetraalkylthiuram disulfides, and [Ce(κ2-S2CNEt2)4] from the CeIII precursor; TbIII and NdIII analogues. Dalton Trans. 2004, 33, 129–136. [Google Scholar] [CrossRef] [PubMed]
λ(exp), nm | n | λ(calc), nm | f | Orbital Transitions * | Contribution | |
---|---|---|---|---|---|---|
[Li(HL)] ** (2) | 560 | 1 | 570 | 0.085 | H → L H → L + 1 | 0.069 0.915 |
2 | 543 | 0.004 | H → L H → L + 1 | 0.919 0.066 | ||
[YL(HL)] (5) | 605 | 1 | 705 | 0.009 | H → L | 0.900 |
2 | 682 | 0.007 | H−1 → L + 1 H−1 → L H−1 → L + 1 | 0.060 0.077 0.767 | ||
3 | 679 | 0.008 | H−1 → L + 1 H−1 → L + 3 | 0.112 0.839 | ||
4 | 677 | 0.017 | H−1 → L + 2 | 0.909 | ||
[Li(thf)4][YL2] (6) | 600 | 1 | 646 | 0.045 | H → L | 0.958 |
2 | 634 | 0.034 | H → L | 0.963 | ||
3 | 600 | 0.014 | H → L | 0.933 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khisamov, R.M.; Sukhikh, T.S.; Konchenko, S.N.; Pushkarevsky, N.A. Yttrium and Lithium Complexes with Diamidophosphane Ligand Bearing 2,1,3-Benzothiazolyl Substituent: Polydentate Complexation and Reversible NH–PH Tautomery. Inorganics 2022, 10, 263. https://doi.org/10.3390/inorganics10120263
Khisamov RM, Sukhikh TS, Konchenko SN, Pushkarevsky NA. Yttrium and Lithium Complexes with Diamidophosphane Ligand Bearing 2,1,3-Benzothiazolyl Substituent: Polydentate Complexation and Reversible NH–PH Tautomery. Inorganics. 2022; 10(12):263. https://doi.org/10.3390/inorganics10120263
Chicago/Turabian StyleKhisamov, Radmir M., Taisiya S. Sukhikh, Sergey N. Konchenko, and Nikolay A. Pushkarevsky. 2022. "Yttrium and Lithium Complexes with Diamidophosphane Ligand Bearing 2,1,3-Benzothiazolyl Substituent: Polydentate Complexation and Reversible NH–PH Tautomery" Inorganics 10, no. 12: 263. https://doi.org/10.3390/inorganics10120263
APA StyleKhisamov, R. M., Sukhikh, T. S., Konchenko, S. N., & Pushkarevsky, N. A. (2022). Yttrium and Lithium Complexes with Diamidophosphane Ligand Bearing 2,1,3-Benzothiazolyl Substituent: Polydentate Complexation and Reversible NH–PH Tautomery. Inorganics, 10(12), 263. https://doi.org/10.3390/inorganics10120263