Novel Enrofloxacin Schiff Base Metal Complexes: Synthesis, Spectroscopic Characterization, Computational Simulation and Antimicrobial Investigation against Some Food and Phyto-Pathogens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Elemental and Molar Conductance
2.2. IR Spectra and Mode of Bonding
2.3. Electronic Absorption Studies and Magnetic Moment Measurements
2.4. 1H NMR Spectra
2.5. Mass Spectrometry
2.6. Thermal Analysis Studies (TG and DTG)
2.7. Calculation of Activation Thermodynamic Parameters
2.8. Antimicrobial Investigation
2.9. Structural Parameters and Models
2.9.1. Structural Parameters and Model of H2Erx-en
2.9.2. Molecular Modeling of Complexes
2.9.3. Charge Distribution Analysis
2.9.4. Frontier Molecular Orbitals
2.9.5. Excited State
3. Materials and Methods
3.1. Materials and Reagents
3.2. Computational Method
3.3. Preparation of H2Erx-en Schiff base (C40H48F2N8O4)
3.4. Preparation of Metal Complexes
3.5. Instruments
3.6. Antimicrobial Investigation
3.6.1. Antibacterial Activity Assay
3.6.2. Antifungal Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhar, D.N.P.; Saxena, N.; Kumar, S. Applications of metal complexes of Schiff bases-A review. J. Sci. Ind. Res. 2009, 68, 181–187. [Google Scholar]
- Elshwiniy, W.H.; Ibrahim, A.G.; Sadeek, S.A.; Zordok, W.A. Synthesis, structural elucidation, molecular modeling and antimicrobial studies of 6-(2-hydroxyphenylimine)-2-thioxotetrahydropyrimidin-4(1H)-one (L) Schiff base metal complexes. Appl. Organomet. Chem. 2021, 35, e6174. [Google Scholar]
- Mohamed, A.A.; Elshafie, H.S.; Sadeek, S.A.; Camele, I. Biochemical Characterization, Phytotoxic Effect and Antimicrobial Activity against Some Phytopathogens of New Gemifloxacin Schiff Base Metal Complexes. Chem. Biodivers. 2021, 18, e2100365. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, P.; Gunasekaran, S.; Manikandan, A. Structural, spectral analysis of ambroxol using DFT methods J. Mol. Struct. 2017, 1144, 379–388. [Google Scholar] [CrossRef]
- Shargh, H.; Nasseri, M.A. Schiff-Base Metal (II) Complexes as New Catalysts in the Efficient, Mild and Regioselective Conversion of 1,2-Epoxyethanes to 2-Hydroxyethyl Thiocyanates with Ammonium Thiocyanate. Bull. Chem. Soc. Japan. 2003, 76, 137–142. [Google Scholar] [CrossRef]
- Turel, I.; Leban, I.; Bukovec, N. Crystal structure and characterization of the bismuth(III) compound with quinolone family member (ciprofloxacin). Antibacterial study. J. Inorg. Biochem. 1997, 66, 241–245. [Google Scholar] [CrossRef]
- Efthimiadou, E.; Karaliota, A.; Psomas, G. Mononuclear dioxomolybdenum(VI) complexes with the quinolones enrofloxacin and sparfloxacin: Synthesis, structure, antibacterial activity and interaction with DNA. Polyhedron 2008, 27, 349–356. [Google Scholar] [CrossRef]
- Souza, M.J.e.; Bittencourt, C.F.; Morsch, L.M. LC determination of enrofloxacin. J. Pharm. Biomed. Anal. 2002, 28, 1195–1199. [Google Scholar] [CrossRef]
- Prescott, J.F.; Yielding, K.M. In vitro susceptibility of selected veterinary bacterial pathogens to ciprofloxacin, enrofloxacin and norfloxacin. Can. J. Vet. Res. 1990, 54, 195–197. [Google Scholar]
- Dessus-Babus, S.; Bebear, C.M.; Charron, A.; Bebear, C.; de Barbeyrac, B. Sequencing of Gyrase and Topoisomerase IV Quinolone-Resistance-Determining Regions of Chlamydia trachomatis and Characterization of Quinolone-Resistant Mutants Obtained In Vitro. Antimicrob. Agents Chemother. 1998, 42, 2474. [Google Scholar] [CrossRef] [Green Version]
- Elshwiniy, W.H.; Sadeek, S.A.; El-Attar, M.S. Metal Complexes of Enrofloxacin Part I: Preparation, Spectroscopic, Thermal Analyses Studies and Antimicrobial Evaluation. J. Kor. Chem. Soc. 2013, 57, 574. [Google Scholar]
- Mahmoud, M.A.; Abou-elmagd, M.G. Template Synthesis, Spectral and Thermal Properties of Nd(III) Metformin Schiff-Base Complexes As Potential Hypoglycemic Agents. Egypt. J. Chem. 2020, 63, 1009–1031. [Google Scholar] [CrossRef]
- Mahmoud, M.; Abdel-Salam, E.; Abou-Elmagd, M.; Sallam, S. Template Synthesis, Spectral, Thermal and Glucose Sensing of Pr3+ Complexes of Metformin Schiff-Bases. J. Fluoresc. 2019, 29, 319–333. [Google Scholar] [CrossRef]
- Łyszczek, R. Hydrothermal synthesis, thermal and luminescent investigations of lanthanide(III) coordination polymers based on the 4,4′-oxybis(benzoate) ligand. J. Therm. Anal. Calorim. 2012, 108, 1101–1110. [Google Scholar] [CrossRef]
- Imran, M.; Iqbal, J.; Iqbal, S.; Ijaz, N. In Vitro Antibacterial studies of ciprofloxacin-imines and their complexes with Cu(II), Ni(II), Co(II), and Zn(II). Turk. J. Biol. 2007, 31, 67–72. [Google Scholar]
- El-Attar, M.S.; Ahmed, F.M.; Sadeek, S.A.; Mohammed, S.F.; Zordok, W.A.; El-Shwiniy, W.H. Characterization, DFT, and antimicrobial evaluation of some new N2O2 tetradentate Schiff base metal complexes. Appl. Organomet. Chem. 2022, 36, e00433. [Google Scholar] [CrossRef]
- Sadeek, S.A.; El-Attar, M.S.; Abd El-Hamid, S.M. Spectral, characterization and antibacterial activity of new some transition metal complexes with ciprofloxacin-imines. Bull. Chem. Soc. Ethiop. 2015, 29, 259. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Sadeek, S.A.; Camele, I.; Mohamed, A.A. Biochemical Characterization of New Gemifloxacin Schiff Base (GMFX-o-phdn) Metal Complexes and Evaluation of Their Antimicrobial Activity against Humans and Some Phytopathogens. Int. J. Mol. Sci. 2022, 23, 2110. [Google Scholar] [CrossRef]
- Geary, W.J. The Use of Conductivity Measurements in Organic Solvents for the Characterisation of Coordination Compounds Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, NY, USA, 1986; p. 230. [Google Scholar]
- Mahmoud, W.H.; Deghadi, R.G.; Mohamed, G.G. Metal complexes of ferrocenyl-substituted Schiff base: Preparation, characterization, molecular structure, molecular docking studies, and biological investigation. J. Organomet. Chem. 2020, 917, 121113. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Sadeek, S.A. Ligational and biological studies of Fe(III), Co(II), Ni(II), Cu(II) and Zr(IV) complexes with carbamazepine as antiepileptic drug. Appl. Organomet. Chem. 2021, 35, e6178. [Google Scholar] [CrossRef]
- Sadeek, S.A.; Refat, M.S.; Hashem, H.A. Complexation and thermogravimetric investigation on tin(II) and tin(IV) with norfloxacin as antibacterial agent. J. Coord. Chem. 2006, 59, 759–775. [Google Scholar] [CrossRef]
- Sadeek, S.A.; Elshwiniy, W.H. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation. J. Mol. Struct. 2010, 977, 243–253. [Google Scholar] [CrossRef]
- Sadeek, S.A.; Elshwiniy, W.H. Preparation, structure and microbial evaluation of metal complexes of the second generation quinolone antibacterial drug lomefloxacin. J. Mol. Struct. 2010, 981, 130–138. [Google Scholar] [CrossRef]
- Sadeek, S.A.; Elshwiniy, W.H. Metal complexes of the third generation quinolone antibacterial drug sparfloxacin: Preparation, structure, and microbial evaluation. J. Coord. Chem. 2010, 63, 3471–3482. [Google Scholar] [CrossRef]
- Refat, M.S. Synthesis and characterization of norfloxacin-transition metal complexes (group 11, IB):Spectroscopic, thermal, kinetic measurements and biological activity. Spectrochim. Acta A 2007, 68, 1393–1405. [Google Scholar] [CrossRef]
- Gao, F.; Yang, P.; Xie, J.; Wang, H. Synthesis, characterization and antibacterial activity of novel Fe(III), Co(II), and Zn(II) complexes with norfloxacin. J. Inorg. Biochem. 1995, 60, 61–67. [Google Scholar]
- Robertson, G.B.; Tucker, P.A. Carbonato bis (tri-isopropylphosphine) platinum(II), C19H42O3P2Pt. Acta. Cryst. 1983, 39, 858–860. [Google Scholar]
- Kortsaris, A.E.; Kyriakidis, D.A. Ornithine decarboxylase and phosphatase activity can be stimulated by low concentrations of interferon in human breast cancer cell lines. Microbiologica 1988, 11, 347–353. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley: New York, NY, USA, 1963; p. 232. [Google Scholar]
- Deacon, G.B.; Phillips, R.J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Mohamed, G.G.; Omar, M.M.; Hindy, A.M.M. Synthesis, characterization and biological activity of some transition metals with Schiff base derived from 2 thiophenecarboxaldehyde and aminobenzoic acid. Spectrochim. Acta A 2005, 62, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, K.; McCarthy, P.J. Spectroscopy and Structure of Metal Chelate Compounds; John Wiley and Sons, Inc.: New York, NY, USA, 1968. [Google Scholar]
- Liu, Y.T.; Lian, G.D.; Yin, D.W.; Su, B.J. Synthesis, characterization and biological activity of ferrocene-based Schiff base ligands and their metal (II) complexes. Spectrochim. Acta A 2013, 100, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Singh, R.V. Ferrocenyl-substituted Schiff base complexes of boron: Synthesis, structural, physico-chemical and biochemical aspects. Spectrochim. Acta 2011, 78, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wu, S.; Zeng, F.; Zhao, J. Synthesis and fluorescence property of terbium complex with novel schiff-base macromolecular ligand. Eur. Polym. J. 2006, 42, 1670–1675. [Google Scholar] [CrossRef]
- Sultanaa, N.; Nazad, A.; Arayne, M.S.; Mesaikc, M.A. Synthesis, characterization, antibacterial, antifungal and immunomodulating activities of gatifloxacin–metal complexes. J. Mol. Struct. 2010, 969, 17–24. [Google Scholar] [CrossRef]
- Leelavathy, C.; Antony, S.A. Synthesis, spectral characterization and biological activity of metal(II) complexes with 4-aminoantipyrine derivatives. Spectrochim. Acta A 2013, 113, 346–355. [Google Scholar] [CrossRef]
- Psomas, G.; Tarushi, A.; Efthimiadou, E.K. Synthesis, characterization and DNA-binding of the mononuclear dioxouranium(VI) complex with ciprofloxacin. Polyhedron 2008, 27, 133–138. [Google Scholar] [CrossRef]
- Saif, M.; Mashaly, M.M.; Eid, M.F.; Fouad, R. Synthesis, characterization and thermal studies of binary and/or mixed ligand complexes of Cd(II), Cu(II), Ni(II) and Co(III) based on 2-(Hydroxybenzylidene) thiosemicarbazone: DNA binding affinity of binary Cu(II) complex. Spectrochim. Acta 2012, 92, 347–356. [Google Scholar] [CrossRef]
- Lever, A.B.P. The electronic spectra of tetragonal metal complexes analysis and significance. Coord. Chem. Rev. 1968, 3, 119–140. [Google Scholar] [CrossRef]
- Mondal, N.; Dey, D.K.; Mitra, S.K.; Abdul Malik, M. Synthesis and structural characterization of mixed ligand η1-2-hydroxyacetophenone complexes of cobalt(II). Polyhedron 2000, 19, 2707–2711. [Google Scholar] [CrossRef]
- Mahmoud, W.H.; Mohamed, G.G.; Elsawy, H.A.; Radwan, M.A. Metal complexes of novel Schiff base derived from the condensation of 2-quinoline carboxaldehyde and ambroxol drug with some transition metal ions. Appl. Organometal. Chem. 2018, 32, e4392. [Google Scholar] [CrossRef]
- Drevenšek, P.; Košmrlj, J.; Giester, G.; Skauge, T.; Sletten, E.; Sepčić, K.; Turela, I. X-Ray crystallographic, NMR and antimicrobial activity studies of magnesium complexes of fluoroquinolones—racemic ofloxacin and its S-form, levofloxacin. J. Inorg. Biochem. 2006, 100, 1755–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Horowitz, H.H.; Metzger, G. A New Analysis of Thermogravimetric Traces. Anal. Chem. 1963, 35, 1464–1468. [Google Scholar] [CrossRef]
- El Gammal, O.A. Mononuclear and binuclear complexes derived from hydrazone Schiff base NON donor ligand: Synthesis, structure, theoretical and biological studies. Inorg. Chim. Acta 2015, 435, 73–81. [Google Scholar] [CrossRef]
- Raman, N.; Kulandaisamy, A.; Thangaraj, C.; Jeyasubramanian, K. Redox and antimicrobial studies of transition metal(II) tetradentate Schiff base complexes. Trans. Met. Chem. 2003, 28, 29–36. [Google Scholar] [CrossRef]
- Mohamed, G.G.; Sharaby, C.M. Metal complexes of Schiff base derived from sulphametrole and o-vanilin: Synthesis, spectral, thermal characterization and biological activity. Spectrochim. Acta A 2007, 66, 949–958. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sadeek, S.A.; Zordok, W.A.; Mohamed, A.A. Meloxicam and Study of Their Antimicrobial Effects against Phyto and Human Pathogens. Molecules 2021, 26, 1480. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sadeek, S.A.; Camele, I.; Awad, H.M.; Mohamed, A.A. Biological and Spectroscopic Investigations of New Tenoxicam and 1.10-Phenthroline Metal Complexes. Molecules 2021, 26, 1027. [Google Scholar] [CrossRef]
- Soliman, M.H.; Mohamed, G.G.; Hindy, A.M.M. Biological activity, spectral and thermal characterization of mixed ligand complexes of enrofloxacin and glycine: In vitro antibacterial and antifungal activity studies. Monatsh. Chem. 2015, 146, 259–273. [Google Scholar] [CrossRef]
- Zordok, W.A.; Sadeek, S.A. Synthesis, spectroscopic, structure, thermal analyses, and biological activity evaluation of new norfloxacin vanadium (V) solvates (L) (L = An, DMF, Py, Et3N and o-Tol). J. Therm. Anal. Calorim. 2017, 128, 971–991. [Google Scholar] [CrossRef]
- Greenaway, A.M.; Dasgupta, T.P.; Koshy, K.C.; Sadler, G.G. A correlation between infrared stretching mode absorptions and structural angular distortions for the carbonato ligand in a wide variety of complexes. Spectrochim. Acta A 1986, 42, 949–954. [Google Scholar] [CrossRef]
- Reck, G.; Faust, G.; Dietz, G. X-ray crystallographic studies of diclofenac-sodium--structural analysis of diclofenac-sodium tetrahydrate. Pharmazie 1988, 43, 771–774. [Google Scholar] [PubMed]
- Malhotra, R.C.; Bohra, R. Metal Carboxylates; Academic Press: London, UK, 1983. [Google Scholar]
- Salazar-Medina, A.J.; amez-Corrales, R.G.; Ramírez, J.Z.; Gonz_alez-Aguilar, G.A.; Vel_azquez-Contreras, E.F. Characterization of metal-bound water in bioactive Fe(III)-cyclophane complexes. J. Mol. Struct. 2018, 1154, 225–231. [Google Scholar] [CrossRef]
- Tyagi, N.; Singh, O.; Ghosh, K. Non-heme iron(III) complex with tridentate ligand: Synthesis, structures and catalytic oxidations of alkanes. Catal. Commun. 2017, 95, 83–87. [Google Scholar] [CrossRef]
- Bazargan, M.; Mirzaei, M.; Eshtiagh-Hosseini, H.J.; Mague, T.; Bauza, A.; Frontera, A. Synthesis, X-ray characterization and DFT study of a novel Fe(III)–pyridine-2,6-dicarboxylic acid N-oxide complex with unusual coordination mode. Inorg. Chim. Acta 2016, 449, 44–51. [Google Scholar] [CrossRef]
- Huaqiong, L.; Huiduo, X.; Guoliang, Z. Synthesis and crystal structures of La(III), Y(III) complexes of homoveratric acid with 1,10-phenanthroline. J. Rare Earths 2010, 28, 7–11. [Google Scholar]
- Tamboura, F.B.; Haba, P.M.; Gaye, M.A.; Sall, S.A.; Barry, H.; Jouini, T. Structural studies of bis-(2,6-diacetylpyridine-bis-(phenylhydrazone)) and X-ray structure of its Y(III), Pr(III), Sm(III) and Er(III) complex. Polyhedron 2004, 23, 1191–1197. [Google Scholar] [CrossRef]
- Cai, M.; Chen, J.; Taha, M. Synthesis, structures and antibacterial activities of two complexes of yttrium (III) with 2,6-pyridinedicarboxylate. Inorg. Chem. Commun. 2010, 13, 199–202. [Google Scholar] [CrossRef]
- Karunarathne, M.C.; Baumann, J.W.; Heeg, M.J.; Martin, P.D.; Winter, C.H. Synthesis, structural characterization, and volatility evaluation of zirconium and hafnium amidate complexes. J. Organometallic Chem. 2017, 847, 204–212. [Google Scholar] [CrossRef]
- Sahraei, A.; Kargar, H.; Hakimi, M.; Tahir, M.N. Distorted square-antiprism geometry of new zirconium (IV) Schiff base complexes: Synthesis, spectral characterization, crystal structure and investigation of biological properties. J. Mol. Struct. 2017, 1149, 576–584. [Google Scholar] [CrossRef]
- Yan, L.; Wang, X.; Zhou, M. Synthesis, structural characterization and catalytic properties of a N-functionalized organoamide zirconium complex. Inorg. Chem. Commun. 2016, 65, 32–34. [Google Scholar] [CrossRef]
- Gao, X.S.; Jiang, X.; Yao, C. Two new complexes of Lanthanide(III) ion with the N3O2-donor Schiff base ligand: Synthesis, crystal structure, and magnetic properties. J. Mol. Struct. 2016, 1126, 275–279. [Google Scholar] [CrossRef]
- Change, R. Physical Chemistry for Chemical and Biological Sciences; University Science Books: Mill Valley, CA, USA, 2000. [Google Scholar]
- Leciejewicz, J.; Ptasiewicz-Bąk, H.; Premkumar, T.; Govindarajan, S. Crystal Structure of a Lanthanum(III) Complex with Pyrazine-2-Carboxylate and Water Ligands. J. Coord. Chem. 2004, 57, 97–103. [Google Scholar] [CrossRef]
- Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley: London, UK, 1976. [Google Scholar]
- Kurtaran, R.; Odabasoglu, S.; Azizoglu, A.; Kara, H.; Atakol, O. Experimental and computational study on [2,6-bis(3,5-dimethylN-pyrazolyl)pyridine]-(dithiocyanato)mercury(II). Polyhedron. 2007, 26, 5069–5074. [Google Scholar] [CrossRef]
- Krogmann, K.; Anorg, Z. Die Kristallstruktur von K2[Pd(C2O4)2]4H2O. Allg. Chem. 1966, 346, 188–202. [Google Scholar] [CrossRef]
- Ciofini, I.; Laine, P.P.; Bedioui, F.; Admo, C. Photoinduced Intramolecular Electron Transfer in Ruthenium and Osmium Polyads:Insights from Theory. J. Am. Chem. Soc. 2004, 126, 10763–11077. [Google Scholar] [CrossRef]
- Ciofini, I.I.; Daul, C.; Adamo, C.J. Phototriggered Linkage Isomerization in Ruthenium–Dimethylsulfoxyde Complexes: Insights from Theory. J. Phys. Chem. A 2003, 107, 11182–11190. [Google Scholar] [CrossRef]
- Casida, F.M. Recent Advances in Density Functional Methods, Part 1; Chong, D.P., Ed.; World Scientific: Singapore, 1995. [Google Scholar]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Frisch, M.J. Gaussian 98; Revision A.6, Inc.: Pittsburgh, PA, USA, 1998. [Google Scholar]
- Kohn, W. Density Functional and Density Matrix Method Scaling Linearly with the Number of Atoms. Phys. Rev. Lett. 1996, 76, 3168. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flurry, R.L., Jr. Molecular Orbital Theory of Bonding in Organic Molecules; Marcel Dekker: New York, NY, USA, 1968. [Google Scholar]
- Bergner, A.; Dolg, M.; Kuechle, W.; Stoll, H.; Preuss, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 1993, 80, 1431–1441. [Google Scholar] [CrossRef]
- Sakr, S.H.; Elshafie, H.S.; Camele, I.; Sadeek, S.A. Synthesis, Spectroscopic, and Biological Studies of Mixed Ligand Complexes of Gemifloxacin and Glycine with Zn(II), Sn(II), and Ce(III). Molecules 2018, 23, 1182. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Sakr, S.H.; Sadeek, S.A.; Camele, I. Biological investigations and spectroscopic studies of new Moxifloxacin/Glycine-Metal complexes. Chem. Biodiver. 2019, 16, e1800633. [Google Scholar] [CrossRef]
- Beecher, D.J.; Wong, A.C. Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. Appl. Environ. Microbial. 1994, 60, 1646–1651. [Google Scholar] [CrossRef] [Green Version]
- Fallik, E.; Klein, J.; Grinberg, S.; Lomaniee, E.; Lurie, S.; Lalazar, A. Effect of Postharvest Heat Treatment of Tomatoes on Fruit Ripening and Decay Caused by Botrytis cinerea. Plant Dis. 1993, 77, 985–988. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sakr, S.; Bufo, S.A.; Camele, I. An attempt of biocontrol the tomato-wilt disease caused by Verticillium dahliae using Burkholderia gladioli pv. agaricicola and its bioactive secondary metabolites. Int. J. Plant Biol. 2017, 8, 57–60. [Google Scholar]
- Elshafie, H.S.; Viggiani, L.; Mostafa, M.S.; El-Hashash, M.A.; Bufo, S.A.; Camele, I. Biological activity and chemical identification of ornithine lipid produced by Burkholderia gladioli pv. agaricicola ICMP 11096 using LC-MS and NMR analyses. J. Biol. Res. 2017, 90, 96–103. [Google Scholar]
- Rehman, W.; Badshah, A.; Baloch, M.K.; Ali, S.; Hameed, G.; Khan, K.M. Synthesis Characterization and Biological Screening of Tri-benzyl Tin(IV) Complexes of Some Schiff Bases. Chin. Chem. Soc. 2004, 51, 929. [Google Scholar] [CrossRef]
- Sofo, A.; Elshafie, H.S.; Scopa, A.; Mang, S.M.; Camele, I. Impact of airborne zinc pollution on the antimicrobial activity of olive oil and the microbial metabolic profiles of Zn-contaminated soils in an Italian olive orchard. J. Trace Elem. Med. Biol. 2018, 49, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.T.; Cleirigh, C.O.; Walsh, P.K.; Shea, D.G.O. Development of a robust microtiter plate-based assay method for assessment of bioactivity. J. Microbiol. Meth. 2004, 5, 327–334. [Google Scholar] [CrossRef] [PubMed]
Compounds M.Wt (M.F.) | Yield% (Mp/°C) | Color | Found (Calc) % | Λ Ω−1 mol−1 cm2 | ||||
---|---|---|---|---|---|---|---|---|
C | H | N | M | Cl | ||||
H2Erx-en 742.90 (C40H48F2N8O4) | 84.00 (273) | Pale orange | 64.50 (64.61) | 6.35 (6.46) | 14.98 (15.07) | - | - | 8.95 |
(1) 958.19(FeC40H60F2N8O11Cl) | 79.12 (281) | Reddish brown | 48.98 (50.09) | 6.19 (6.26) | 11.50 (11.68) | 5.71 (5.82) | 3.60 (3.69) | 90.25 |
(2) 1009.25 (YC40H62F2N8O12Cl) | 89.25 (279) | Pale Brown | 47.41 (47.56) | 6.05 (6.14) | 11.00 (11.09) | 5.70 (5.83) | 8.73 (8.80) | 88.37 |
(3) 956.124 (ZrC40H58F2N8O11) | 76.37 (287) | Yellow | 50.12 (50.20) | 6.00 (6.06) | 11.60 (11.71) | 9.43 (9.54) | - | 14.67 |
(4) 1059.25 (LaC40H62F2N8O12Cl) | 81.38 (292) | White | 45.20 (45.31) | 5.76 (5.85) | 10.45 (10.57) | 13.06 (13.11) | 3.25 (3.34) | 89.12 |
Compounds | ν (O-H); H2O; COOH | ν(C=O); COOH | νas (COO−) | ν (C=N) | νs (COO−) | ν (M-O), ν (M-N) |
---|---|---|---|---|---|---|
H2Erx-en | 3429 mbr | 1735 s | - | 1626 vs | - | |
(1) | 3428 sbr | - | 1629 s | 1500 m | 1390 m | 626 w, 507 w |
(2) | 3410 sbr | - | 1629 vs | 1567 s | 1379 m | 624 w, 552 w |
(3) | 3437 sbr | - | 1628 vs | 1521 m | 1388 w | 630 w, 540 w |
(4) | 3433 sbr | - | 1627 vs | 1561 m | 1400 w | 636 w, 567 m |
Compounds | π-π * Transitions | ν (cm−1) | ϵ (M−1 cm−1) | n-π * Transitions | ν (cm−1) | ϵ (M−1 cm−1) | MLCT | ν (cm−1) | ϵ (M−1 cm−1) | d-d Transition | ν (cm−1) | ϵ (M−1 cm−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
H2Erx-en | 286 | 34,965 | 2000 | 328 | 30,487 | 750 | - | - | - | - | - | - |
(1) | 251 277 | 39,840 36,101 | 3990 3450 | 320 | 31,250 | 1600 | 466 | 21,459 | 750 | 562 | 17,793 | 450 |
(2) | 283 | 35,335 | 2450 | 328 | 30,487 | 1300 | 482 | 20,746 | 870 | - | - | - |
(3) | 284 | 35,211 | 3888 | 331 | 30,211 | 1920 | 458 | 21,834 | 560 | - | - | - |
(4) | 283 | 35,335 | 4000 | 330 | 30,303 | 1760 | 473 | 21,141 | 740 | - | - | - |
H2Erx-en | (1) | (2) | (3) | (4) | Assignments |
---|---|---|---|---|---|
1.03–1.32 | 1.13–1.36 | 1.14–1.35 | 1.19–1.31 | 1.08–1.35 | δH, -CH2 cyclopropane |
1.42–1.46 | 1.39–1.45 | 1.36–1.47 | 1.32–1.46 | 1.36–1.47 | δH, CH3; piperazine |
1.64 | 1.86 | 1.87 | 1.91 | 1.89 | δH, -CH cyclopropane |
2.39 | 2.40 | 2.50 | 2.45 | 2.46 | δH, CH2; piperazine |
2.52 | 2.50 | 2.48 | 2.45 | 2.51 | δH, -CH2 amine methylene |
2.59–3.62 | 2.47–3.53 | 2.49–3.43 | 2.50–3.60 | 2.49–3.52 | δH, -NH; piperazine |
- | 3.75 | 3.74 | 3.87 | 3.79 | δH, H2O |
7.55–8.65 | 7.36–8.67 | 7.45–8.66 | 7.36–8.66 | 7.52–8.66 | δH, -CH aromatic |
11.13 | - | - | - | - | δH, -COOH |
Compounds | Decomposition | Tmax (°C) | Weight Loss (%) | Lost Species | |
---|---|---|---|---|---|
Calc. | Found | ||||
H2Erx-en | First step | 357 | 100.00 | 99.28 | 20 C2H2 + 2 HF + 2 NH3 + 4 NO + N2 |
Total loss | 100.00 | 99.28 | |||
(1) | First step | 60 | 9.39 | 9.30 | 5 H2O |
Second step | 237,308 | 82.28 | 82.25 | 20 C2H2 + 2 HF + HCl + 2.5 H2O + H2 + 3.5 N2 + NO2 | |
Total loss | 91.67 | 91.55 | |||
Residue | 8.33 | 8.45 | 0.5 Fe2O3 | ||
(2) | First step | 71 | 10.70 | 10.60 | 6 H2O |
Second step | 224,323,416 | 45.68 | 45.62 | 16 C2H2 + 2.5 H2O | |
Third step | 688,765 | 28.87 | 28.94 | 2 C2H2 + CO + 2 HF + HCl + NO + 2 NH3 + 2.5 N2 | |
Total loss | 85.25 | 85.16 | |||
Residue | 14.75 | 14.84 | 0.5 Y2O3 + 3 C | ||
(3) | First step | 56 | 9.41 | 9.37 | 5 H2O |
Second step | 264,471 | 50.83 | 50.80 | 18 C2H2 + H2O | |
Third step | 670 | 25.62 | 25.98 | 2 HF + 2 NH3 + 3 N2 + H2 + 3 CO | |
Total loss | 85.86 | 86.15 | |||
Residue | 14.14 | 13.85 | ZrO2 + C | ||
(4) | First step | 83 | 10.19 | 10.00 | 6 H2O |
Second step | 337,415 | 40.23 | 40.18 | 15 C2H2 + 2 H2O | |
Third step | 604,857 | 30.81 | 30.68 | 2 C2H2 + C2N2 + 2 HF + HCl + 1.5 H2O + CO + 2 NH3 + 2 N2 | |
Total loss | 81.23 | 80.86 | |||
Residue | 18.77 | 19.14 | 0.5 La2O3 + 3 C |
Compounds | Decomposition Range (K) | Ts (K) | Method | Parameters | r | SD | ||||
---|---|---|---|---|---|---|---|---|---|---|
Ea (kJ/mol) | A (s−1) | ΔS * (kJ/mol.K) | ΔH * (kJ/mol) | ΔG * (kJ/mol) | ||||||
H2Erx-en | 433–731 | 630 | CR | 25.44 | 1.588 | −0.247 | 20.20 | 175.98 | 0.984 | 0.172 |
HM | 70.28 | 2.37 × 103 | −0.186 | 65.04 | 182.53 | 0.965 | 0.253 | |||
(1) | 308–472 | 333 | CR | 25.78 | 5.8277 | −0.231 | 23.02 | 100.00 | 0.994 | 0.088 |
HM | 26.57 | 7.06 × 101 | −0.210 | 23.81 | 93.88 | 0.989 | 0.116 | |||
472–606 | 581 | CR | 56.81 | 5.95 × 102 | −0.197 | 51.98 | 166.63 | 0.980 | 0.189 | |
HM | 68.61 | 5.99× 103 | −0.178 | 63.78 | 167.28 | 0.968 | 0.237 | |||
(2) | 308–421 | 344 | CR | 22.71 | 1.2007 | −0.244 | 19.85 | 103.94 | 0.990 | 0.105 |
HM | 23.51 | 1.47 × 101 | −0.223 | 20.65 | 97.61 | 0.982 | 0.145 | |||
308–421 | 596 | CR | 46.13 | 5.497 | −0.236 | 41.17 | 182.13 | 0.980 | 0.161 | |
HM | 44.97 | 2.21 × 101 | −0.224 | 40.02 | 174.07 | 0.967 | 0.212 | |||
(3) | 307–394 | 329 | CR | 18.67 | 0.1223 | −0.263 | 15.93 | 102.52 | 0.985 | 0.127 |
HM | 15.90 | 0.9819 | −0.245 | 13.16 | 94.05 | 0.969 | 0.186 | |||
394–564 | 537 | CR | 22.48 | 0.0500 | −0.274 | 18.01 | 165.53 | 0.987 | 0.146 | |
HM | 23.37 | 0.3040 | −0.259 | 18.91 | 158.36 | 0.957 | 0.272 | |||
(4) | 308–435 | 356 | CR | 22.44 | 0.7429 | −0.248 | 19.48 | 108.07 | 0.990 | 0.106 |
HM | 24.88 | 1.75 × 101 | −0.222 | 21.92 | 101.15 | 0.981 | 0.145 | |||
437–635 | 590 | CR | 31.98 | 0.9430 | −0.251 | 27.07 | 175.21 | 0.985 | 0.150 | |
HM | 41.81 | 1.20 × 101 | −0.229 | 36.91 | 172.53 | 0.967 | 0.220 |
Complexes | Microbial Species | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bacteria | Fungi | |||||||||||
E. coli | AI | Salm.typhi | AI | S. aureus | AI | B. cereus | AI | C. albicans | AI | P. vulpinum | AI | |
[ZrO(Erx-en)(H2O)]·5H2O | 0 | 0 | 0 | 0 | 27.6 +3 ± 0.8 | 113.3 | 0 | 0 | 0 | 0 | 0 | - |
Zr(IV)/Erx [11] | 37 +3 ± 0.58 | 272.0 | 0 | 0 | ND | 0 | 0 | 0 | 0 | 0 | 0 | - |
[Fe(Erx-en)(H2O)2]Cl·5H2O | 0 | 0 | 0 | 42.9 | 31.6 +3 ± 2 | 232.3 | 3.3 +2 ± 0.1 | 0 | 0 | 0 | 0 | - |
[Fe(EFX)(Gly)(H2O)2]Cl.H2O [53] | 30 ±0.18 | 0 | 0 | −0 | ±0.1632 | 0 | 0 | 0 | 11 ± 0.22 | 0 | 0 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, A.A.; Ahmed, F.M.; Zordok, W.A.; El-Shwiniy, W.H.; Sadeek, S.A.; Elshafie, H.S. Novel Enrofloxacin Schiff Base Metal Complexes: Synthesis, Spectroscopic Characterization, Computational Simulation and Antimicrobial Investigation against Some Food and Phyto-Pathogens. Inorganics 2022, 10, 177. https://doi.org/10.3390/inorganics10110177
Mohamed AA, Ahmed FM, Zordok WA, El-Shwiniy WH, Sadeek SA, Elshafie HS. Novel Enrofloxacin Schiff Base Metal Complexes: Synthesis, Spectroscopic Characterization, Computational Simulation and Antimicrobial Investigation against Some Food and Phyto-Pathogens. Inorganics. 2022; 10(11):177. https://doi.org/10.3390/inorganics10110177
Chicago/Turabian StyleMohamed, Amira A., Fatma M. Ahmed, Wael A. Zordok, Walaa H. El-Shwiniy, Sadeek A. Sadeek, and Hazem S. Elshafie. 2022. "Novel Enrofloxacin Schiff Base Metal Complexes: Synthesis, Spectroscopic Characterization, Computational Simulation and Antimicrobial Investigation against Some Food and Phyto-Pathogens" Inorganics 10, no. 11: 177. https://doi.org/10.3390/inorganics10110177
APA StyleMohamed, A. A., Ahmed, F. M., Zordok, W. A., El-Shwiniy, W. H., Sadeek, S. A., & Elshafie, H. S. (2022). Novel Enrofloxacin Schiff Base Metal Complexes: Synthesis, Spectroscopic Characterization, Computational Simulation and Antimicrobial Investigation against Some Food and Phyto-Pathogens. Inorganics, 10(11), 177. https://doi.org/10.3390/inorganics10110177