All-PM Fiber Tm-Doped Laser with Two Fiber Lyot Filters Mode-Locked by CNT
Abstract
:1. Introduction
2. Experimental Scheme and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bertie, J.E.; Lan, Z. Infrared Intensities of Liquids XX: The Intensity of the OH Stretching Band of Liquid Water Revisited, and the Best Current Values of the Optical Constants of H2O(l) at 25 °C between 15,000 and 1 cm−1. Appl. Spectrosc. 1996, 50, 1047–1057. [Google Scholar] [CrossRef]
- Rice, P.; Somani, B.K. A Systematic Review of Thulium Fiber Laser: Applications and Advantages of Laser Technology in the Field of Urology. Res. Rep. Urol. 2021, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- Enikeev, D.; Taratkin, M.; Klimov, R.; Alyaev, Y.; Rapoport, L.; Gazimiev, M.; Korolev, D.; Ali, S.; Akopyan, G.; Tsarichenko, D.; et al. Thulium-fiber laser for lithotripsy: First clinical experience in percutaneous nephrolithotomy. World J. Urol. 2020, 38, 3069. [Google Scholar] [CrossRef] [PubMed]
- Leindecker, N.; Marandi, A.; Byer, R.L.; Vodopyanov, K.L.; Jiang, J.; Hartl, I.; Fermann, M.; Schunemann, P.G. Octave-spanning ultrafast OPO with 2.6–6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express 2012, 20, 7046. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Akosman, A.E.; Sander, M.Y. Supercontinuum Generation from a Thulium Ultrafast Fiber Laser in a High NA Silica Fiber. IEEE Photonics Technol. Lett. 2019, 31, 1787. [Google Scholar] [CrossRef]
- Dianov, E.M. Fibre optics: Forty years later. Quantum Electron. 2010, 40, 1. [Google Scholar] [CrossRef]
- Solodyankin, M.A.; Obraztsova, E.D.; Lobach, A.S.; Chernov, A.I.; Tausenev, A.V.; Konov, V.I.; Dianov, E.M. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett. 2008, 33, 1336–1338. [Google Scholar] [CrossRef]
- Ambekar, R.; Lau, T.-Y.; Walsh, M.; Bhargava, R.; Toussaint, K.C. Quantifying collagen structure in breast biopsies using second-harmonic generation imaging. Biomed. Opt. Express 2012, 3, 2021–2035. [Google Scholar] [CrossRef]
- Dupriez, P. Ultrafast Fiber Lasers for Multiphoton Microscopy: High-resolution microscopy using ultrafast fiber lasers. PhotonicsViews 2019, 16, 70–73. [Google Scholar] [CrossRef]
- Gaida, C.; Gebhardt, M.; Heuermann, T.; Stutzki, F.; Jauregui, C.; Limpert, J. Ultrafast thulium fiber laser system emitting more than 1 kW of average power. Opt. Lett. 2018, 43, 5853. [Google Scholar] [CrossRef]
- Chernysheva, M.; Rozhin, A.; Fedotov, Y.; Mou, C.; Arif, R.; Kobtsev, S.; Dianov, E.M.; Turitsyn, S. Carbon nanotubes for ultrafast fibre lasers. Nanophotonics 2017, 6, 1–30. [Google Scholar] [CrossRef]
- Ding, J.; Wen, Z.; Lu, B.; Wang, K.; Chen, H.; Bai, J. Wavelength switchable dissipative soliton mode-locked fiber laser based on Lyot filter. Opt. Laser Technol. 2021, 144, 107460. [Google Scholar] [CrossRef]
- Khabushev, E.M.; Krasnikov, D.V.; Zaremba, O.T.; Tsapenko, A.P.; Goldt, A.E.; Nasibulin, A.G. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 2019, 10, 6962–6966. [Google Scholar] [CrossRef] [PubMed]
- Kivistö, S.; Hakulinen, T.; Kaskela, A.; Aitchison, B.; Brown, D.P.; Nasibulin, A.G.; Kauppinen, E.I.; Härkönen, A.; Okhotnikov, O.G. Carbon nanotube films for ultrafast broadband technology. Opt. Express 2009, 17, 2358–2363. [Google Scholar] [CrossRef] [PubMed]
- Galiakhmetova, D.; Gladush, Y.; Mkrtchyan, A.; Fedorov, F.S.; Khabushev, E.M.; Krasnikov, D.V.; Chinnambedu-Murugesan, R.; Manuylovich, E.; Dvoyrin, V.; Rozhin, A.; et al. Direct measurement of carbon nanotube temperature between fiber ferrules as a universal tool for saturable absorber stability investigation. Carbon 2021, 184, 941–948. [Google Scholar] [CrossRef]
- Kobtsev, S.; Ivanenko, A.; Gladush, Y.G.; Nyushkov, B.; Kokhanovskiy, A.; Anisimov, A.S.; Nasibulin, A. Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film. Opt. Express 2016, 24, 28768–28773. [Google Scholar] [CrossRef]
- Khegai, A.; Melkumov, M.; Firstov, S.; Riumkin, K.; Gladush, Y.; Alyshev, S.; Lobanov, A.; Khopin, V.; Afanasiev, F.; Nasibulin, A.G.; et al. Bismuth-doped fiber laser at 1.32 μm mode-locked by single-walled carbon nanotubes. Opt. Express 2018, 26, 23911–23917. [Google Scholar] [CrossRef]
- Bufetov, I.A.; Bubnov, M.M.; Melkumov, M.; Dudin, V.V.; Shubin, A.V.; Semenov, S.L.; Kravtsov, K.; Gur’Yanov, A.N.; Yashkov, M.V.; Dianov, E.M. Yb-, Er—Yb-, and Nd-doped fibre lasers based on multi-element first cladding fibres. Quantum Electron. 2005, 35, 328. [Google Scholar] [CrossRef]
- Özgören, K.; Ilday, F. All-fiber all-normal dispersion laser with a fiber-based Lyot filter. Opt. Lett. 2010, 35, 1296–1298. [Google Scholar] [CrossRef]
- Fedotov, Y.S.; Kobtsev, S.M.; Rozhin, A.G.; Turitsyn, S.K.; Mou, C. Spectral width and pulse duration tuning in Yb+ mode-locked fiber laser with birefringent Lyot filter. In Proceedings of the Access Networks and In-House Communications 2012, Colorado Springs, CO, USA, 20 June 2012; p. JM5A-25. [Google Scholar]
- Lazaridis, P.; Debarge, G.; Gallion, P. Time–bandwidth product of chirped sech2 pulses: Application to phase–amplitude-coupling factor measurement. Opt. Lett. 1995, 20, 1160–1162. [Google Scholar] [CrossRef] [Green Version]
- Oishi, J.; Kimura, T. Thermal expansion of fused quartz. Metrologia 1969, 5, 50. [Google Scholar] [CrossRef]
- Ding, Z.; Meng, Z.; Yao, X.S.; Chen, X.; Liu, T.; Qin, M. Accurate method for measuring the thermal coefficient of group birefringence of polarization-maintaining fibers. Opt. Lett. 2011, 36, 2173–2175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ososkov, Y.; Khegai, A.; Riumkin, K.; Mkrtchyan, A.; Gladush, Y.; Krasnikov, D.; Nasibulin, A.; Yashkov, M.; Guryanov, A.; Melkumov, M. All-PM Fiber Tm-Doped Laser with Two Fiber Lyot Filters Mode-Locked by CNT. Photonics 2022, 9, 608. https://doi.org/10.3390/photonics9090608
Ososkov Y, Khegai A, Riumkin K, Mkrtchyan A, Gladush Y, Krasnikov D, Nasibulin A, Yashkov M, Guryanov A, Melkumov M. All-PM Fiber Tm-Doped Laser with Two Fiber Lyot Filters Mode-Locked by CNT. Photonics. 2022; 9(9):608. https://doi.org/10.3390/photonics9090608
Chicago/Turabian StyleOsoskov, Yan, Aleksandr Khegai, Konstantin Riumkin, Aram Mkrtchyan, Yuriy Gladush, Dmitry Krasnikov, Albert Nasibulin, Mikhail Yashkov, Alexey Guryanov, and Mikhail Melkumov. 2022. "All-PM Fiber Tm-Doped Laser with Two Fiber Lyot Filters Mode-Locked by CNT" Photonics 9, no. 9: 608. https://doi.org/10.3390/photonics9090608
APA StyleOsoskov, Y., Khegai, A., Riumkin, K., Mkrtchyan, A., Gladush, Y., Krasnikov, D., Nasibulin, A., Yashkov, M., Guryanov, A., & Melkumov, M. (2022). All-PM Fiber Tm-Doped Laser with Two Fiber Lyot Filters Mode-Locked by CNT. Photonics, 9(9), 608. https://doi.org/10.3390/photonics9090608