Optimization of the Distance between Cylindrical Light Distributors Used for Interstitial Light Delivery in Biological Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cylindrical Light Diffusers
2.2. Tissue Model
2.3. Simulation and Optimizing Algorithm
3. Results
3.1. Validation of the MC Simulations: Comparison between the MC and Analytical Models
3.2. Influence of the Tumor Optical Parameters on the CLD-CLD Distances Maximizing the Necrosed Volume
3.3. Influence of CLDs Properties on the CLD-CLD Distances Maximizing the Necrosed Volume
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kim, M.M.; Darafsheh, A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem. Photobiol. 2020, 96, 280–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafirstein, G.; Bellnier, D.; Oakley, E.; Hamilton, S.; Potasek, M.; Beeson, K.; Parilov, E. Interstitial Photodynamic Therapy-A Focused Review. Cancers 2017, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuyama, S.; Nagaya, T.; Sato, K.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Interstitial Near-Infrared Photoimmunotherapy: Effective Treatment Areas and Light Doses Needed for Use with Fiber Optic Diffusers. Oncotarget 2018, 9, 11159–11169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaya, T.; Okuyama, S.; Ogata, F.; Maruoka, Y.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy Using a Fiber Optic Diffuser for Treating Peritoneal Gastric Cancer Dissemination. Gastric Cancer 2019, 22, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Civantos, F.J.; Karakullukcu, B.; Biel, M.; Silver, C.E.; Rinaldo, A.; Saba, N.F.; Takes, R.P.; Vander Poorten, V.; Ferlito, A. A Review of Photodynamic Therapy for Neoplasms of the Head and Neck. Adv. Ther. 2018, 35, 324–340. [Google Scholar] [CrossRef]
- van Dongen, G.A.M.S.; Visser, G.W.M.; Vrouenraets, M.B. Photosensitizer-Antibody Conjugates for Detection and Therapy of Cancer. Adv. Drug Deliv. Rev. 2004, 56, 31–52. [Google Scholar] [CrossRef] [PubMed]
- Shirasu, N.; Nam, S.O.; Kuroki, M. Tumor-Targeted Photodynamic Therapy. Anticancer. Res. 2013, 33, 2823–2831. [Google Scholar]
- Sato, K.; Ando, K.; Okuyama, S.; Moriguchi, S.; Ogura, T.; Totoki, S.; Hanaoka, H.; Nagaya, T.; Kokawa, R.; Takakura, H.; et al. Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS Cent. Sci. 2018, 4, 1559–1569. [Google Scholar] [CrossRef] [Green Version]
- Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer Cell–Selective in Vivo near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules. Nat. Med. 2011, 17, 1685–1691. [Google Scholar] [CrossRef] [Green Version]
- Rakuten Medical, Inc. A Phase 1/2a Multicenter, Open-Label, Dose-Escalation, Combination Study of RM-1929 and Photoimmunotherapy in Patients With Recurrent Head and Neck Cancer, Who in the Opinion of Their Physician, Cannot Be Satisfactorily Treated With Surgery, Radiation or Platinum Chemotherapy. Available online: Clinicaltrials.gov (accessed on 22 August 2022).
- Rakuten Medical, Inc. A Phase 3, Randomized, Double-Arm, Open-Label, Controlled Trial of ASP-1929 Photoimmunotherapy Versus Physician’s Choice Standard of Care for the Treatment of Locoregional, Recurrent Head and Neck Squamous Cell Carcinoma in Patients Who Have Failed or Progressed On or After at Least Two Lines of Therapy, of Which at Least One Line Must Be Systemic Therapy. Available online: Clinicaltrials.gov (accessed on 22 August 2022).
- Tahara, M.; Okano, S.; Enokida, T.; Ueda, Y.; Fujisawa, T.; Shinozaki, T.; Tomioka, T.; Okano, W.; Biel, M.A.; Ishida, K.; et al. A Phase I, Single-Center, Open-Label Study of RM-1929 Photoimmunotherapy in Japanese Patients with Recurrent Head and Neck Squamous Cell Carcinoma. Int. J. Clin. Oncol. 2021, 26, 1812–1821. [Google Scholar] [CrossRef]
- Cognetti, D.M.; Johnson, J.M.; Curry, J.M.; Kochuparambil, S.T.; McDonald, D.; Mott, F.; Fidler, M.J.; Stenson, K.; Vasan, N.R.; Razaq, M.A.; et al. Phase 1/2a, Open-Label, Multicenter Study of RM-1929 Photoimmunotherapy in Patients with Locoregional, Recurrent Head and Neck Squamous Cell Carcinoma. Head Neck 2021, 43, 3875–3887. [Google Scholar] [CrossRef] [PubMed]
- Baran, T.M.; Foster, T.H. Comparison of Flat Cleaved and Cylindrical Diffusing Fibers as Treatment Sources for Interstitial Photodynamic Therapy. Med. Phys. 2014, 41, 022701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaya, T.; Friedman, J.; Maruoka, Y.; Ogata, F.; Okuyama, S.; Clavijo, P.E.; Choyke, P.L.; Allen, C.; Kobayashi, H. Host Immunity Following Near-Infrared Photoimmunotherapy Is Enhanced with PD-1 Checkpoint Blockade to Eradicate Established Antigenic Tumors. Cancer Immunol. Res. 2019, 7, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Mitsunaga, M.; Nakajima, T.; Sano, K.; Kramer-Marek, G.; Choyke, P.L.; Kobayashi, H. Immediate in Vivo Target-Specific Cancer Cell Death after near Infrared Photoimmunotherapy. BMC Cancer 2012, 12, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitzschke, A.; Bertholet, J.; Lovisa, B.; Zellweger, M.; Wagnières, G. Determination of the Radiance of Cylindrical Light Diffusers: Design of a One-Axis Charge-Coupled Device Camera-Based Goniometer Setup. JBO 2017, 22, 035004. [Google Scholar] [CrossRef]
- Zellweger, M.; Xiao, Y.; Jain, M.; Giraud, M.-N.; Pitzschke, A.; de Kalbermatten, M.; Berger, E.; van den Bergh, H.; Cook, S.; Wagnières, G. Optical Characterization of an Intra-Arterial Light and Drug Delivery System for Photodynamic Therapy of Atherosclerotic Plaque. Appl. Sci. 2020, 10, 4304. [Google Scholar] [CrossRef]
- Cheong, W.F.; Prahl, S.A.; Welch, A.J. A Review of the Optical Properties of Biological Tissues. IEEE J. Quantum Electron. 1990, 26, 2166–2185. [Google Scholar] [CrossRef] [Green Version]
- Holmer, C.; Lehmann, K.-S.; Wanken, J.; Reissfelder, C.; Roggan, A.; Gerhard, J.M.; Buhr, H.; Ritz, J. Optical Properties of Adenocarcinoma and Squamous Cell Carcinoma of the Gastroesophageal Junction. J. Biomed. Opt. 2007, 12, 1–8. [Google Scholar] [CrossRef]
- Bargo, P.R.; Prahl, S.A.; Goodell, T.T.; Sleven, R.A.; Koval, G.; Blair, G.; Jacques, S.L. In Vivo Determination of Optical Properties of Normal and Tumor Tissue with White Light Reflectance and an Empirical Light Transport Model during Endoscopy. J. Biomed. Opt. 2005, 10, 034018. [Google Scholar] [CrossRef] [Green Version]
- Niemz, M.H. Laser-Tissue Interactions; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-72191-8. [Google Scholar]
- Tuchin, V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis; Society of Photo-Optical Instrumentation Engineers (SPIE) Press Books: Bellingham, WA, USA, 2015; ISBN 978-1-62841-516-2. [Google Scholar]
- Jacques, S.L.; Wang, L. Monte Carlo Modeling of Light Transport in Tissues. In Optical-Thermal Response of Laser-Irradiated Tissue; Welch, A.J., Van Gemert, M.J.C., Eds.; Lasers Photonics and Electro-Optics; Springer: Boston, MA, USA, 1995; pp. 73–100. ISBN 978-1-4757-6092-7. [Google Scholar]
- Tracepro, Illumination and Non-Imaging Optical Design & Analysis Tool. Available online: Lambdares.com (accessed on 22 August 2022).
- Tsukerman, E.; Veomett, E. A Simple Proof of Cauchy’s Surface Area Formula. arXiv 2016, arXiv:1604.05815. [Google Scholar]
- Ishimaru, A. Wave Propagation and Scattering in Random Media. Volume 1—Single Scattering and Transport Theory; Academic Press: Cambridge, MA, USA, 1978; Volume 1. [Google Scholar]
- Tromberg, B.J.; Svaasand, L.O.; Fehr, M.K.; Madsen, S.J.; Wyss, P.; Sansone, B.; Tadir, Y. A Mathematical Model for Light Dosimetry in Photodynamic Destruction of Human Endometrium. Phys. Med. Biol. 1996, 41, 223–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streeter, S.S.; Jacques, S.L.; Pogue, B.W. Perspective on Diffuse Light in Tissue: Subsampling Photon Populations. JBO 2021, 26, 070601. [Google Scholar] [CrossRef] [PubMed]
- Ismael, F.S.; Amasha, H.; Bachir, W. Optimized Cylindrical Diffuser Powers for Interstitial PDT Breast Cancer Treatment Planning: A Simulation Study. BioMed Res. Int. 2020, 2020, e2061509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, D.J.; de Bruijn, H.S.; van der Veen, N.; Stringer, M.R.; Brown, S.B.; Star, W.M. Fluorescence Photobleaching of ALA-Induced Protoporphyrin IX during Photodynamic Therapy of Normal Hairless Mouse Skin: The Effect of Light Dose and Irradiance and the Resulting Biological Effect. Photochem. Photobiol. 1998, 67, 140–149. [Google Scholar] [CrossRef] [PubMed]
Simulation n° | a’ | |||
---|---|---|---|---|
1 | 0.052 | 0.64 | 0.33 | 0.925 |
2 | 0.071 | 0.44 | 0.33 | 0.861 |
3 | 0.078 | 0.70 | 0.42 | 0.899 |
4 | 0.082 | 1.00 | 0.52 | 0.925 |
5 | 0.111 | 0.69 | 0.52 | 0.861 |
Number of CLDs | |||||||
---|---|---|---|---|---|---|---|
One | Two | Three | Four | Five | Six | Seven | |
| | Central CLD: | | | | | |
Cyclical: | | | | | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregor, A.; Sase, S.; Wagnieres, G. Optimization of the Distance between Cylindrical Light Distributors Used for Interstitial Light Delivery in Biological Tissues. Photonics 2022, 9, 597. https://doi.org/10.3390/photonics9090597
Gregor A, Sase S, Wagnieres G. Optimization of the Distance between Cylindrical Light Distributors Used for Interstitial Light Delivery in Biological Tissues. Photonics. 2022; 9(9):597. https://doi.org/10.3390/photonics9090597
Chicago/Turabian StyleGregor, Aurélien, Shohei Sase, and Georges Wagnieres. 2022. "Optimization of the Distance between Cylindrical Light Distributors Used for Interstitial Light Delivery in Biological Tissues" Photonics 9, no. 9: 597. https://doi.org/10.3390/photonics9090597
APA StyleGregor, A., Sase, S., & Wagnieres, G. (2022). Optimization of the Distance between Cylindrical Light Distributors Used for Interstitial Light Delivery in Biological Tissues. Photonics, 9(9), 597. https://doi.org/10.3390/photonics9090597