Product of Two Laguerre–Gaussian Beams
Abstract
1. Introduction
2. Theoretical Background
3. Numerical Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kogelnik, H.; Li, T. Laser beams and resonators. Appl. Opt. 1966, 5, 1550–1567. [Google Scholar] [CrossRef] [PubMed]
- Zauderer, E. Complex argument Hermite-Gaussian and Laguerre-Gaussian beams. J. Opt. Soc. Am. A 1986, 3, 465–469. [Google Scholar] [CrossRef]
- Wünsche, A. Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry. J. Opt. Soc. Am. A 1989, 6, 1320–1329. [Google Scholar] [CrossRef]
- Abramochkin, E.; Volostnikov, V. Beam transformations and nontransformed beams. Opt. Commun. 1991, 83, 123–135. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre– Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Abramochkin, E.G.; Volostnikov, V.G. Generalized Gaussian beams. J. Opt. A Pure Appl. Opt. 2004, 6, S157–S161. [Google Scholar] [CrossRef]
- Abramochkin, E.; Razueva, E.; Volostnikov, V. General astigmatic transform of Hermite–Laguerre–Gaussian beams. J. Opt. Soc. Am. A 2010, 27, 2506–2513. [Google Scholar] [CrossRef]
- Zhou, G.; Ru, G. Orbital Angular Momentum Density of an Elegant Laguerre-Gaussian Beam. Prog. Electromagn. Res. 2013, 141, 751–768. [Google Scholar] [CrossRef][Green Version]
- Kotlyar, V.V.; Khonina, S.N.; Almazov, A.A.; Soifer, V.A.; Jefimovs, K.; Turunen, J. Elliptic Laguerre-Gaussian beams. J. Opt. Soc. Am. A 2006, 23, 43–56. [Google Scholar] [CrossRef]
- Mendoza-Hernández, J.; Arroyo-Carrasco, M.L.; Iturbe-Castillo, M.D.; Chávez-Cerda, S. Laguerre–Gauss beams versus Bessel beams showdown: Peer comparison. Opt. Lett. 2015, 40, 3739–3742. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.; Sheng, Q.; He, X.; Liu, J.; Shi, W.; Yao, J.; Omatsu, T. Laguerre-Gaussian beam generation via enhanced intracavity spherical aberration. Opt. Express 2021, 29, 27783–27790. [Google Scholar] [CrossRef] [PubMed]
- Rafayelyan, M.; Brasselet, E. Laguerre–Gaussian modal q-plates. Opt. Lett. 2017, 42, 1966–1969. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Ren, Y.-H.; Yu, Y.; Yu, Z.; Sun, X.; Zhang, S.; Wong, K.K.Y. Broadband meta-converters for multiple Laguerre-Gaussian modes. Photon. Res. 2021, 9, 1689–1698. [Google Scholar] [CrossRef]
- Liang, G.; Wang, Q. Controllable conversion between Hermite Gaussian and Laguerre Gaussian modes due to cross phase. Opt. Express 2019, 27, 10684–10691. [Google Scholar] [CrossRef] [PubMed]
- Longman, A.; Fedosejevs, R. Optimal Laguerre–Gaussian modes for high-intensity optical vortices. J. Opt. Soc. Am. A 2020, 37, 841–848. [Google Scholar] [CrossRef]
- Dong, M.; Lu, X.-Y.; Zhao, C.; Cai, Y.; Yang, Y. Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam. Opt. Express 2018, 26, 33035–33043. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Kotlyar, V.V.; Porfirev, A.P. Asymmetric Laguerre-Gaussian beams. Phys. Rev. A 2016, 93, 063858. [Google Scholar] [CrossRef]
- Hsieh, Y.H.; Lai, Y.H.; Hsieh, M.X.; Huang, K.F.; Chen, Y.F. Generating high-power asymmetrical Laguerre-Gaussian modes and exploring topological charges distribution. Opt. Express 2018, 26, 31738–31749. [Google Scholar] [CrossRef]
- Ghaderi Goran Abad, M.; Mahmoudi, M. Laguerre-Gaussian modes generated vector beam via nonlinear magneto-optical rotation. Sci. Rep. 2021, 11, 5972. [Google Scholar] [CrossRef]
- Huang, S.; Miao, Z.; He, C.; Pang, F.; Li, Y.; Wang, T. Composite vortex beams by coaxial superposition of Laguerre-Gaussian beams. Opt. Lasers Eng. 2016, 78, 132–139. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Wang, F.; Zhao, C.; Cai, Y. Elliptical Laguerre-Gaussian correlated Schell-model beam. Opt. Express 2014, 22, 13975–13987. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Yang, Z.; Belic, M.; Zhong, W. Two-dimensional asymmetric Laguerre-Gaussian diffraction-free beams. Phys. Lett. A 2022, 423, 127818. [Google Scholar] [CrossRef]
- Zhong, W.; Zhong, W.; Belic, M.; Zhang, Z. Controllable two-dimensional diffraction-free polygon beams. Phys. Lett. A 2022, 432, 128009. [Google Scholar] [CrossRef]
- Zhong, W.; Yi, L. Two-dimensional Laguerre-Gaussian soliton family in strongly nonlocal nonlinear media. Phys. Rev. A 2007, 75, 061801. [Google Scholar] [CrossRef]
- Zhong, W. Two-dimensional Laguerre-Gaussian asymmetric soliton family in strong nonlocal media. Chin. Phys. Lett. 2008, 25, 2074–2077. [Google Scholar]
- Zhong, W.; Belic, M. Three-dimensional optical vortex and necklace solitons in highly nonlocal nonlinear media. Phys. Rev. A 2009, 79, 023804. [Google Scholar] [CrossRef]
- Pang, K.; Liu, C.; Xie, G.; Ren, Y.; Zhao, Z.; Zhang, R.; Cao, Y.; Zhao, J.; Song, H.; Song, H.; et al. Demonstration of a 10 Mbit/s quantum communication link by encoding data on two Laguerre–Gaussian modes with different radial indices. Opt. Lett. 2018, 43, 5639–5642. [Google Scholar] [CrossRef]
- Doster, T.; Watnik, A.T. Laguerre–Gauss and Bessel–Gauss beams propagation through turbulence: Analysis of channel efficiency. Appl. Opt. 2016, 55, 10239–10246. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, X.; Zhao, C.; Wang, F.; Gbur, G.; Cai, Y. Spiral spectrum of a Laguerre-Gaussian beam propagating in anisotropic non-Kolmogorov turbulent atmosphere along horizontal path. Opt. Express 2019, 27, 25342–25356. [Google Scholar] [CrossRef]
- Cox, M.A.; Maqondo, L.; Kara, R.; Milione, G.; Cheng, L.; Forbes, A. The Resilience of Hermite– and Laguerre–Gaussian Modes in Turbulence. J. Lightwave Technol. 2019, 37, 3911–3917. [Google Scholar] [CrossRef]
- Otsu, T.; Ando, T.; Takiguchi, Y.; Ohtake, Y.; Toyoda, H.; Itoh, H. Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam. Sci. Rep. 2014, 4, 4579. [Google Scholar] [CrossRef] [PubMed]
- Peshkov, A.A.; Seipt, D.; Surzhykov, A.; Fritzsche, S. Photoexcitation of atoms by Laguerre-Gaussian beams. Phys. Rev. A 2017, 96, 023407. [Google Scholar] [CrossRef]
- Courtial, J.; Dholakia, K.; Allen, L.; Padgett, M.J. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes. Phys. Rev. A 1997, 56, 4193. [Google Scholar] [CrossRef]
- Wu, H.; Mao, L.; Yang, Y.; Rosales-Guzman, C.; Gao, W.; Shi, B.; Zhu, Z. Radial modal transformations of Laguerre-Gauss modes during parametric up-conversion: Towards the full-field selection rule of spatial modes. Phys. Rev. A 2020, 101, 063805. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Bychkov, Y.; Marychev, O.I. Integrals and Series: Volume 2: Special Functions; “Nauka” Publisher: Moscow, Russia, 1983. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotlyar, V.V.; Abramochkin, E.G.; Kovalev, A.A.; Savelyeva, A.A. Product of Two Laguerre–Gaussian Beams. Photonics 2022, 9, 496. https://doi.org/10.3390/photonics9070496
Kotlyar VV, Abramochkin EG, Kovalev AA, Savelyeva AA. Product of Two Laguerre–Gaussian Beams. Photonics. 2022; 9(7):496. https://doi.org/10.3390/photonics9070496
Chicago/Turabian StyleKotlyar, Victor V., Eugeny G. Abramochkin, Alexey A. Kovalev, and Alexandra A. Savelyeva. 2022. "Product of Two Laguerre–Gaussian Beams" Photonics 9, no. 7: 496. https://doi.org/10.3390/photonics9070496
APA StyleKotlyar, V. V., Abramochkin, E. G., Kovalev, A. A., & Savelyeva, A. A. (2022). Product of Two Laguerre–Gaussian Beams. Photonics, 9(7), 496. https://doi.org/10.3390/photonics9070496