Real-Time Access to Collisions between a Two-Soliton Molecule and a Soliton Singlet in an Ultrafast Fiber Laser
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zabusky, N.J.; Kruskal, M.D. Interaction of ‘solitons’ in a collision-less plasma and the recurrence of initial states. Phys. Rev. Lett. 1965, 15, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Dauxois, T.; Peyrard, M. Physics of Solitons; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Stellmer, S.; Becker, C.; Panahi, P.; Richter, E.; Dorscher, S.; Baumert, M.; Kronjager, J.; Bongs, K.; Sengstock, K. Collisions of dark solitons in elongated Bose-Einstein condensates. Phys. Rev. Lett. 2008, 101, 120406. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, G.I.; Segev, M. Optical spatial solitons and their interactions: Universality and diversity. Science 1999, 286, 1518–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, A.; Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. anomalous dispersion. Appl. Phys. Lett. 1973, 23, 142–144. [Google Scholar] [CrossRef]
- Mollenauer, L.F.; Stolen, R.H.; Gordon, J.P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 1980, 45, 1095–1098. [Google Scholar] [CrossRef]
- Cundiff, S.T.; Collings, B.; Akhmediev, N.; Soto-Crespo, J.M.; Bergman, K.; Knox, W. Observation of polarization-locked vector solitons in an optical fiber. Phys. Rev. Lett. 1999, 82, 3988–3991. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.M.; Tang, D.Y.; Wu, X.; Zhang, H. Dissipative soliton trapping in normal dispersion-fiber lasers. Opt. Lett. 2010, 35, 1902–1904. [Google Scholar] [CrossRef]
- Horowitz, M.; Silberberg, Y. Control of noiselike pulse generation in erbium-doped fiber lasers. IEEE Photonics Technol. Lett. 1998, 10, 1389–1391. [Google Scholar] [CrossRef]
- Wang, X.; Komarov, A.; Klimczak, M.; Su, L.; Tang, D.Y.; Shen, D.Y.; Li, L.; Zhao, L.M. Generation of noise-like pulses with 203nm 3-dB bandwidth. Opt. Express 2019, 27, 24147–24153. [Google Scholar] [CrossRef]
- Soto-Crespo, J.M.; Akhmediev, N.; Ankiewicz, A. Pulsating, creeping, and erupting solitons in dissipative systems. Phys. Rev. Lett. 2000, 85, 2937–2940. [Google Scholar] [CrossRef] [Green Version]
- Soto-Crespo, J.M.; Grapinet, M.; Grelu, P.; Akhmediev, N. Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser. Phys. Rev. E 2004, 70, 066612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, D.Y.; Zhao, L.M.; Zhao, B.; Liu, A.Q. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A 2005, 72, 043816. [Google Scholar] [CrossRef]
- Pang, M.; Jiang, X.; He, W.; Wong, G.K.L.; Onishchukov, G.; Joly, N.Y.; Ahmed, G.; Menyuk, C.R.; Russell, P.S.J. Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core. Optica 2015, 2, 339–342. [Google Scholar] [CrossRef]
- Pang, M.; He, W.; Jiang, X.; Russell, P.S.J. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photonics 2016, 10, 454–458. [Google Scholar] [CrossRef]
- Malomed, B.A. Bound solitons in the nonlinear Schrodinger-Ginzburg-Landau equation. Phys. Rev. A 1991, 44, 6954–6957. [Google Scholar] [CrossRef]
- Tang, D.Y.; Zhao, B.; Zhao, L.M.; Tam, H.Y. Soliton interaction in a fiber ring laser. Phys. Rev. E 2005, 72, 016616. [Google Scholar] [CrossRef] [Green Version]
- Kutz, J.N.; Collings, B.C.; Bergman, K.; Knox, W.H. Stabilized pulse spacing in soliton lasers due to gain depletion and recovery. IEEE J. Quantum Electron. 1998, 34, 1749–1757. [Google Scholar] [CrossRef] [Green Version]
- Zaviyalov, A.; Grelu, P.; Lederer, F. Impact of slow gain dynamics on soliton molecules in mode-locked fiber lasers. Opt. Lett. 2012, 37, 175–177. [Google Scholar] [CrossRef]
- Jang, J.K.; Erkintalo, M.; Murdoch, S.G.; Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photonics 2013, 7, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Andrianov, A.; Kim, A. Widely stretchable soliton crystals in a passively mode-locked fiber laser. Opt. Express 2021, 29, 25202–25216. [Google Scholar] [CrossRef]
- Andrianov, A.V. All-Optical Manipulation of Elastic Soliton Crystals in a Mode-Locked Fiber Laser. IEEE Photonics Technol. Lett. 2022, 34, 39–42. [Google Scholar] [CrossRef]
- Goda, K.; Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 2013, 7, 102–112. [Google Scholar] [CrossRef]
- Liu, X.; Yao, X.; Cui, Y. Real-Time Observation of the Buildup of Soliton Molecules. Phys. Rev. Lett. 2018, 121, 023905. [Google Scholar] [CrossRef] [PubMed]
- Runge, A.F.J.; Broderick, N.G.R.; Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2015, 2, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Li, H.; Li, J.; Wang, Z.; Zhang, Z.; Zhang, S.; Liu, Y. Vector dynamics of pulsating solitons in an ultrafast fiber laser. Opt. Lett. 2020, 45, 5024–5027. [Google Scholar] [CrossRef] [PubMed]
- Krupa, K.; Nithyanandan, K.; Andral, U.; Tchofo-Dinda, P.; Grelu, P. Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules. Phys. Rev. Lett. 2017, 118, 243901. [Google Scholar] [CrossRef] [PubMed]
- Herink, G.; Kurtz, F.; Jalali, B.; Solli, D.R.; Ropers, C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 2017, 356, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Xia, R.; Shum, P.P.; Ni, W.; Liu, Y.; Lam, H.Q.; Sun, Q.; Tang, X.; Zhao, L. Real-time dynamics of soliton triplets in fiber lasers. Photonics Res. 2020, 8, 884–891. [Google Scholar] [CrossRef]
- Wei, Y.; Li, B.; Wei, X.; Yu, Y.; Wong, K.K.Y. Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser. Appl. Phys. Lett. 2018, 112, 081104. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, X.; Liu, B.; Yu, J.; Liu, Y.; He, R.; He, J.; Li, H.; Wang, Z. Real-time dynamics of soliton collision in a bound-state soliton fiber laser. Nanophotonics 2019, 9, 1921–1929. [Google Scholar] [CrossRef]
- Liu, M.; Li, T.-J.; Luo, A.; Xu, W.-C.; Luo, Z.-C. “Periodic” soliton explosions in a dual-wavelength mode-locked Yb-doped fiber laser. Photonics Res. 2020, 8, 246–251. [Google Scholar] [CrossRef]
- Zhao, K.J.; Gao, C.X.; Xiao, X.S.; Yang, C.X. Real-time collision dynamics of vector solitons in a fiber laser. Photonics Res. 2021, 9, 289–298. [Google Scholar] [CrossRef]
- Grelu, P.; Akhmediev, N. Group interactions of dissipative solitons in a laser cavity: The case of 2 + 1. Opt. Express 2004, 12, 3184–3189. [Google Scholar] [CrossRef] [PubMed]
- Akhmediev, N.; Soto-Crespo, J.M.; Grapinet, M.; Grelu, P. Dissipative soliton interactions inside a fiber laser cavity. Opt. Fiber Technol. 2005, 11, 209–228. [Google Scholar] [CrossRef] [Green Version]
- Roy, V.; Olivier, M.; Babin, F.; Piche, M. Dynamics of periodic pulse collisions in a strongly dissipative-dispersive system. Phys. Rev. Lett. 2005, 94, 203903. [Google Scholar] [CrossRef]
- Olivier, M.; Roy, V.; Piche, M.; Babin, F. Pulse collisions in the stretched-pulse fiber laser. Opt. Lett. 2004, 29, 1461–1463. [Google Scholar] [CrossRef]
- He, J.; Wang, P.; He, R.; Liu, C.; Zhou, M.; Liu, Y.; Yue, Y.; Liu, B.; Xing, D.; Zhu, K.; et al. Elastic and inelastic collision dynamics between soliton molecules and a single soliton. Opt. Express 2022, 30, 14218–14231. [Google Scholar] [CrossRef]
- Du, W.; Xia, H.; Li, H.; Liu, C.; Wang, P.; Liu, Y. High-repetition-rate all-fiber femtosecond laser with an optical integrated component. Appl. Opt. 2017, 56, 2504–2509. [Google Scholar] [CrossRef]
- He, W.; Pang, M.; Yeh, D.H.; Huang, J.; Russell, P.S.J. Synthesis and dissociation of soliton molecules in parallel optical-soliton reactors. Light Sci. Appl. 2021, 10, 120. [Google Scholar] [CrossRef]
- Peng, J.; Sorokina, M.; Sugavanam, S.; Tarasov, N.; Churkin, D.V.; Turitsyn, S.K.; Zeng, H. Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers. Commun. Phys. 2018, 1, 20. [Google Scholar] [CrossRef]
- Man, W.S.; Tam, H.Y.; Demokan, M.S.; Wai, P.K.A.; Tang, D.Y. Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser. J. Opt. Soc. Am. B 2000, 17, 28–33. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, H.; Wang, Z.; Zhang, Z.; Zhang, S.; Liu, Y. Real-Time Access to Collisions between a Two-Soliton Molecule and a Soliton Singlet in an Ultrafast Fiber Laser. Photonics 2022, 9, 489. https://doi.org/10.3390/photonics9070489
Li J, Li H, Wang Z, Zhang Z, Zhang S, Liu Y. Real-Time Access to Collisions between a Two-Soliton Molecule and a Soliton Singlet in an Ultrafast Fiber Laser. Photonics. 2022; 9(7):489. https://doi.org/10.3390/photonics9070489
Chicago/Turabian StyleLi, Junwen, Heping Li, Zhuang Wang, Zhiyao Zhang, Shangjian Zhang, and Yong Liu. 2022. "Real-Time Access to Collisions between a Two-Soliton Molecule and a Soliton Singlet in an Ultrafast Fiber Laser" Photonics 9, no. 7: 489. https://doi.org/10.3390/photonics9070489
APA StyleLi, J., Li, H., Wang, Z., Zhang, Z., Zhang, S., & Liu, Y. (2022). Real-Time Access to Collisions between a Two-Soliton Molecule and a Soliton Singlet in an Ultrafast Fiber Laser. Photonics, 9(7), 489. https://doi.org/10.3390/photonics9070489