A Microwave Photonic Converter with High in-Band Spurs Suppression Based on Microwave Pre-Upconversion
Abstract
:1. Introduction
2. Principle
3. Simulation Results
4. Experimental Results
4.1. Experimental Setup
4.2. Optical Spectrum
4.3. Electrical Spectrum
4.4. Dynamic Range
4.5. Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Wang, Y.; Yang, D.; Yang, F.; Wang, D. A Microwave Photonic Downconverter with the Third-order Distortion Suppression. In Proceedings of the Laser Science 2019, Washington, DC, USA, 15–19 September 2019. Paper JW3A.116. [Google Scholar] [CrossRef]
- Lin, C.-M.; Lin, H.-K.; Lin, C.-F.; Lai, Y.-A.; Lin, C.-H.; Wang, Y.-H. A 16–44 GHz Compact Doubly Balanced Monolithic Ring Mixer. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 620–622. [Google Scholar] [CrossRef]
- Helmy, A.; Sharaf, K.; Ragai, H. Analysis and optimization of noise in bipolar RF harmonic mixers. In Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, MWSCAS 2001 (Cat. No. 01CH37257), Dayton, OH, USA, 14–17 August 2002; Volume 2, pp. 829–832. [Google Scholar] [CrossRef]
- Verma, A.; Gao, L.; Lin, J. A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13-µm CMOS technology. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 493–495. [Google Scholar] [CrossRef]
- Yang, T.-Y.; Chiou, H.-K. A 16–46 GHz Mixer Using Broadband Multilayer Balun in 0.18-µm CMOS Technology. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 534–536. [Google Scholar] [CrossRef]
- Chan, E.H.W.; Minasian, R.A. Microwave Photonic Downconverter with High Conversion Efficiency. J. Light. Technol. 2012, 30, 3580–3585. [Google Scholar] [CrossRef]
- Capmany, J.; Novak, D. Microwave photonics combines two worlds. Nat. Photonics 2007, 1, 319–330. [Google Scholar] [CrossRef]
- Brunetti, G.; Dell’Olio, F.; Conteduca, D.; Armenise, M.N.; Ciminelli, C. Ultra-Compact Tuneable Notch Filter Using Silicon Photonic Crystal Ring Resonator. J. Light. Technol. 2019, 37, 2970–2980. [Google Scholar] [CrossRef]
- Yao, J. Photonics to the Rescue: A Fresh Look at Microwave Photonic Filters. IEEE Microw. Mag. 2015, 16, 46–60. [Google Scholar] [CrossRef]
- Minasian, R.A.; Yi, X. Advances in Microwave Photonic Beamforming for Phased-Array Antennas. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Zhu, C.; Lu, L.; Shan, W.; Xu, W.; Zhou, G.; Zhou, L.; Chen, L. Silicon integrated microwave photonic beamformer. Optica 2020, 7, 1162. [Google Scholar] [CrossRef]
- Yao, J. Photonic generation of microwave arbitrary waveforms. Opt. Commun. 2011, 284, 3723–3736. [Google Scholar] [CrossRef]
- Krishnan, A.; Knapczyk, M.; De Peralta, L.; Bernussi, A.; Temkin, H. Reconfigurable direct space-to-time pulse-shaper based on arrayed waveguide grating multiplexers and digital micromirrors. IEEE Photonics Technol. Lett. 2005, 17, 1959–1961. [Google Scholar] [CrossRef]
- McKinney, J.D.; Leaird, D.E.; Weiner, A.M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Opt. Lett. 2002, 27, 1345–1347. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, G.; Armenise, M.N.; Ciminelli, C. Chip-Scaled Ka-Band Photonic Linearly Chirped Microwave Waveform Generator. Front. Phys. 2022, 10, 158. [Google Scholar] [CrossRef]
- Gopalakrishnan, G.; Burns, W.; Bulmer, C. Microwave-optical mixing in LiNbO/sub 3/modulators. IEEE Trans. Microw. Theory Technol. 1993, 41, 2383–2391. [Google Scholar] [CrossRef]
- Gallo, J.; Godshall, J. Comparison of series and parallel optical modulators for microwave down-conversion. IEEE Photonics Technol. Lett. 1998, 10, 1623–1625. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Wang, D.; Zhou, T.; Xu, J.; Zhong, X.; Yang, D.; Rong, L. Ultra-wideband microwave photonic frequency downconverter based on carrier-suppressed single-sideband modulation. Opt. Commun. 2018, 410, 799–804. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, F.; Chen, X.; Pan, S. A simple microwave photonic downconverter with high conversion efficiency based on a polarization modulator. In Proceedings of the 2014 Asia Communications and Photonics Conference (ACP), Shanghai, China, 11–14 November 2014. Paper AF2E.4. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, S.; Tan, Q.; Li, X.; Liang, D.; Range, D. Wideband microwave photonic downconverter with low phase noise and improved spurious-free. In Proceedings of the 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, China, 23–26 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Zhou, T.; Wang, D.; Li, J.; Zhong, X.; Yang, D. Microwave photonic frequency downconverter based on single sideband modulation. In Proceedings of the AOPC 2017: Fiber Optic Sensing and Optical Communications, Beijing, China, 4–6 June 2017. [Google Scholar]
- Qiao, Y.; Li, H.; Hu, X.; Gong, C.; Sun, K.; Wei, Y. Microwave Photonic Sub-harmonic Downconverter with Image Rejection Capability. In Proceedings of the 2019 IEEE 4th Optoelectronics Global Conference (OGC), Shenzhen, China, 3–6 September 2019; pp. 40–44. [Google Scholar] [CrossRef]
- Shen, J.; Wu, G.; Zou, W.; Chen, R.; Chen, J. Linear and stable photonic radio frequency phase shifter based on a dual-parallel Mach–Zehnder modulator using a two-drive scheme. Appl. Opt. 2013, 52, 8332–8337. [Google Scholar] [CrossRef]
- Lei, M.; Gao, X.; Zhao, M.; Huang, S. A Phase-Tunable Microwave Phonic Downconverter Based on Double-Sideband Modulation of Radio Frequency Signal and Local Oscillator Signal. In Proceedings of the Asia Communications and Photonics Conference 2017, Guangzhou, China, 10–13 November 2017. Paper S4E.5. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, W.; Cheng, S.; Cao, S.; Zhou, X.F. A 0.18 um 3.3 mW double-balanced CMOS active mixer. In Proceedings of the 2007 7th International Conference on ASIC, Guilin, China, 22–25 October 2007; pp. 419–422. [Google Scholar] [CrossRef]
- Tu, Z.; Xu, J.; Chen, K.; Lei, O.; Zhang, X. Design of a X-band Frequency-Conversion Front-End T/R Module. In Proceedings of the 2018 China International SAR Symposium (CISS), Shanghai, China, 10–12 October 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Haas, B.M.; Murphy, T.E. Linearized Downconverting Microwave Photonic Link Using Dual-Wavelength Phase Modulation and Optical Filtering. IEEE Photonics J. 2011, 3, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.; Chan, E.; Wang, X.; Feng, X.; Guan, B.-O. Broadband Microwave Photonic Sub Harmonic Downconverter with Phase Shifting Ability. IEEE Photonics J. 2017, 9, 5501910. [Google Scholar] [CrossRef]
- Haas, B.M.; Murphy, T.E. A carrier-suppressed phase-modulated fiber optic link with IF downconversion of 30 GHz 64-QAM signals. In Proceedings of the 2009 International Topical Meeting on Microwave Photonics, Valencia, Spain, 14–16 October 2009; pp. 1–4. [Google Scholar]
- Shan, D.; Wen, A.; Zhai, W.; Li, X.; Zhang, W.; Tu, Z. Filter-free image-reject microwave photonic downconverter based on cascaded modulators. Appl. Opt. 2019, 58, 3432–3437. [Google Scholar] [CrossRef]
- Sun, C.; Orazi, R.; Pappert, S. Efficient microwave frequency conversion using photonic link signal mixing. IEEE Photonics Technol. Lett. 1996, 8, 154–156. [Google Scholar] [CrossRef]
- Bhatt, D. Design of Wideband Active Mixer by using an Active Inductor. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 1173–1175. [Google Scholar] [CrossRef]
- Skolnik, M.I. Radar Handbook; McGraw-Hill, Inc.: London, UK, 2008; pp. 12–15. [Google Scholar]
- Pujol, O.; Mesnard, F.; Sauvageot, H. Effects of Melting Layer in Airborne Meteorological X-Band Radar Observations. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2318–2324. [Google Scholar] [CrossRef]
- Evers, C.; Smith, A.; Lee, D. Application of radar multistatic techniques to air traffic control. In Proceedings of the Record of the IEEE, 2000 International Radar Conference [Cat. No. 00CH37037], Alexandria, VA, USA, 12 May 2002; pp. 763–768. [Google Scholar] [CrossRef]
- He, M.; Xu, M.; Ren, Y.; Jian, J.; Ruan, Z.; Xu, Y.; Gao, S.; Sun, S.; Wen, X.; Zhou, L.; et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 2019, 13, 359–364. [Google Scholar] [CrossRef]
- Li, Q.; Sun, K.; Li, K.; Yu, Q.; Zang, J.; Wang, Z.; Runge, P.; Ebert, W.; Beling, A.; Campbell, J.C. Waveguide-integrated high-speed and high-power photodiode with >105 GHz bandwidth. In Proceedings of the 2017 IEEE Photonics Conference (IPC), Orlando, FL, USA, 1–5 October 2017; pp. 49–50. [Google Scholar] [CrossRef]
- Henry, P. Lightwave primer. IEEE J. Quantum Electron. 1985, 21, 1862–1879. [Google Scholar] [CrossRef]
- Inui, T.; Komukai, T.; Nakazawa, M.; Suzuki, K.; Tamura, K.; Uchiyama, K.; Morioka, T. Adaptive dispersion slope equalizer using a nonlinearly chirped fiber Bragg grating pair with a novel dispersion detection technique. IEEE Photonics Technol. Lett. 2002, 14, 549–551. [Google Scholar] [CrossRef]
- Lanne, S.; Penninckx, D.; Thiery, J.-P.; Hamaide, J.-P. Impact of chirping on polarization-mode dispersion compensated systems. IEEE Photonics Technol. Lett. 2000, 12, 1492–1494. [Google Scholar] [CrossRef]
- Dong, B.; Wei, L.; Zhou, D.-P. Coupling Between the Small-Core-Diameter Dispersion Compensation Fiber and Single-Mode Fiber and Its Applications in Fiber Lasers. J. Light. Technol. 2010, 28, 1363–1367. [Google Scholar] [CrossRef]
Abbreviations | Meaning |
---|---|
LD | Laser diode |
MZM | Mach–Zehnder modulator |
EDFA | Erbium-doped fiber amplifier |
PD | Photodetector |
EF | Electrical filter |
PA | Power amplifier |
LNA | Low-noise amplifier |
MUC | Microwave upconverter |
EC | Electrical combiner |
DAC | Digital to analog converter |
ADC | Analog to digital converter |
FS | Frequency synthesizer |
Schemes | Conversion Type | Conversion Efficiency | Purity of Electrical Spectrum | Modulation Mode | Limitation of Bandwidth | Demonstrated Bandwidth |
---|---|---|---|---|---|---|
[28] | Downconversion | 8.8 dB | Good (spurious suppression > 40 dBc in 90–110 MHz) | CS-SSB | Edge roll-off of optical filter and DPMZM | 6–40 GHz |
[29] | Downconversion | −3.5 dB | Not measured | CS-DSB | Edge roll-off of optical filter and MZM | Not measured |
[30] | Downconversion | Around −27 dB | Good (spurious suppression > 40 dBc in 400–600 MHz) | DSB | MZM and PDM-MZM in series | 2–9 GHz |
This paper | Both upconversion and downconversion | Around −35 dB | Good (spurious suppression > 40 dBc in the whole in-band) | CS-DSB | MZM | 0.8–18 GHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhao, Y.; Zhao, Z.; Zhang, W.; Wang, W.; Jia, Q.; Liu, J. A Microwave Photonic Converter with High in-Band Spurs Suppression Based on Microwave Pre-Upconversion. Photonics 2022, 9, 388. https://doi.org/10.3390/photonics9060388
Wang C, Zhao Y, Zhao Z, Zhang W, Wang W, Jia Q, Liu J. A Microwave Photonic Converter with High in-Band Spurs Suppression Based on Microwave Pre-Upconversion. Photonics. 2022; 9(6):388. https://doi.org/10.3390/photonics9060388
Chicago/Turabian StyleWang, Chaoquan, Yiru Zhao, Zeping Zhao, Weijie Zhang, Wenyu Wang, Qianqian Jia, and Jianguo Liu. 2022. "A Microwave Photonic Converter with High in-Band Spurs Suppression Based on Microwave Pre-Upconversion" Photonics 9, no. 6: 388. https://doi.org/10.3390/photonics9060388
APA StyleWang, C., Zhao, Y., Zhao, Z., Zhang, W., Wang, W., Jia, Q., & Liu, J. (2022). A Microwave Photonic Converter with High in-Band Spurs Suppression Based on Microwave Pre-Upconversion. Photonics, 9(6), 388. https://doi.org/10.3390/photonics9060388