Combination Compensation Method to Improve the Tolerance of Recording Medium Shrinkage in Collinear Holographic Storage
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. The Compensation for Medium Dimensional Change
2.2. Parameters in the Simulation
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dhar, L.; Curtis, K.; FäCke, T. Holographic data storage: Coming of age. Nat. Photonics 2008, 2, 403–405. [Google Scholar] [CrossRef]
- Heanue, J.F.; Bashaw, M.C.; Hesselink, L. Volume holographic storage and retrieval of digital data. Science 1994, 265, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Lin, X.; Lin, Y.; Song, H.; Chen, R.; Chen, M.; Wang, K.; Tan, X. Lensless phase retrieval based on deep learning used in holographic data storage. Opt. Lett. 2021, 46, 4168–4171. [Google Scholar] [CrossRef]
- Lin, X.; Liu, J.; Hao, J.; Wang, K.; Zhang, Y.; Li, H.; Horimai, H.; Tan, X. Collinear holographic data storage technologies. Opto-Electronic Adv. 2020, 3, 190004. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Wu, A.; Tanaka, Y.; Shigaki, M.; Shimura, T.; Lin, X.; Tan, X. High noise margin decoding of holographic data page based on compressed sensing. Opt. Express 2020, 28, 7139–7151. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Hao, J.; Zheng, M.; Dai, T.; Li, H.; Ren, Y. Optical holographic data storage—The time for new development. Opto-Electron. Eng. 2019, 46, 180642. [Google Scholar]
- Nobukawa, T.; Nomura, T. Linear phase encoding for holographic data storage with a single phase-only spatial light modulator. Appl. Opt. 2016, 55, 2565–2573. [Google Scholar] [CrossRef]
- Nobukawa, T.; Nomura, T. Design of high-resolution and multilevel reference pattern for improvement of both light utilization efficiency and signal-to-noise ratio in collinear holographic data storage. Appl. Opt. 2014, 53, 3773–3781. [Google Scholar] [CrossRef]
- Jia, W.; Chen, Z.; Wen, F.J.; Zhou, C.; Chow, Y.; Chung, P.S. Collinear holographic encoding based on pure phase modulation. Appl. Opt. 2011, 50, H10–H15. [Google Scholar] [CrossRef]
- Minabe, J.; Ogasawara, Y.; Yasuda, S.; Kawano, K.; Hayashi, K.; Yoshizawa, H.; Haga, K.; Furuki, M. Multilayer Holographic Storage Using Collinear Optical Systems. Jpn. J. Appl. Phys. 2008, 47, 5968–5970. [Google Scholar] [CrossRef]
- Horimai, H.; Tan, X.; Li, J. Collinear holography. Appl. Opt. 2005, 44, 2575–2579. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, L.; Gu, H.; Tan, X.; He, Q. Wavelength and defocus margins of the collinear holographic storage system. SPIE 2010, 7851, 7851115. [Google Scholar]
- Horimai, H.; Tan, X. Holographic Information Storage System: Today and Future. IEEE Trans. Magn. 2007, 43, 943–947. [Google Scholar] [CrossRef]
- Yasuda, S.; Ogasawara, Y.; Minabe, J.; Kawano, K.; Yoshizawa, H. Optical noise reduction by reconstructing positive and negative images from fourier holograms in collinear holographic storage systems. Opt. Lett. 2006, 31, 1639–1641. [Google Scholar] [CrossRef]
- Mohesh, M.; Viswanath, B.; Manojit, P.; Vincent, T.; Izabela, N. Application of phase shifting electronic speckle pattern interferometry in studies of photoinduced dimension change of photopolymer layers. Opt. Express 2017, 25, 9647–9653. [Google Scholar]
- Fernández, R.; Gallego, S.; Navarro-Fuster, V.; Neipp, C.; Francés, J.; Fenoll, S.; Pascual, I.; Beléndez, A. Dimensional changes in slanted diffraction gratings recorded in photopolymers. Opt. Mater. Express 2016, 6, 3455–3468. [Google Scholar] [CrossRef] [Green Version]
- Moothanchery, M.; Naydenova, I.; Toal, V. Studies of dimension change as a result of holographic recording in acrylamide-based photopolymer film. Appl. Phys. A-Mater. 2011, 104, 899–902. [Google Scholar] [CrossRef] [Green Version]
- Moothanchery, M.; Naydenova, I.; Mintova, S.; Toal, V. Nanozeolites doped photopolymer layers with reduced dimension change. Opt. Express 2011, 19, 25786–25791. [Google Scholar] [CrossRef] [Green Version]
- Moothanchery, M.; Bavigadda, V.; Toal, V.; Naydenova, I. Shrinkage during holographic recording in photopolymer films determined by holographic interferometry. Appl. Opt. 2013, 52, 8519–8527. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, F.; Hong, Y.; Zang, J.; Kang, G.; Tan, X. Volume holographic recording in irgacure 784-doped PMMA photopolymer. Opt. Express 2017, 25, 20654–20662. [Google Scholar] [CrossRef]
- Toishi, M.; Tanaka, T.; Watanabe, K. Analysis of temperature change effects on hologram recordingand a compensation method. Opt. Rev. 2008, 15, 11–18. [Google Scholar] [CrossRef]
- Tanaka, T.; Sako, K.; Kasegawa, R.; Toishi, M.; Watanabe, K. Tunable blue laser compensates for thermal expansion of the medium in holographic data storage. Appl. Opt. 2007, 46, 6263–6272. [Google Scholar] [CrossRef] [PubMed]
- Aswathy, G.; Rajesh, C.S.; Kartha, C.S. Multiplexing recording in nickel-ion-doped photopolymer material for holographic data storage applications. Appl. Opt. 2017, 56, 1566–1573. [Google Scholar] [CrossRef]
- Neipp, C.; Taleb, S.I.; Francés, J.; Fernández, R.; Beléndez, A. Analysis of the Imaging Characteristics of Holographic Waveguides Recorded in Photopolymers. Polymers 2020, 12, 1485. [Google Scholar] [CrossRef]
- Fan, F.; Liu, Y.; Hong, Y.; Zang, J.; Wu, A.; Zhao, T.; Kang, G.; Tan, X.; Shimura, T. Improving the polarization-holography performance of PQ/PMMA photopolymer by doping with THMFA. Opt. Express 2018, 26, 17794–17803. [Google Scholar] [CrossRef]
- Dhar, L.; Schnoes, M.G.; Wysock, T.L.; Bair, H.; Schilling, M.; Boyd, C. Temperature-induced changes in photopolymer volume holograms. Appl. Phys. Lett. 1998, 73, 1337–1339. [Google Scholar] [CrossRef]
- Tomiji, T. Recording and reading temperature tolerance in holographic data storage, in relation to the anisotropic thermal expansion of a photopolymer medium. Opt. Express 2009, 17, 14132–14142. [Google Scholar]
- Ishii, N.; Muroi, T.; Kinoshita, N.; Kamijo, K.; Shimidzu, N. Wavefront compensation method using novel index in holographic data storage. J. Eur. Opt. Soc-Rapid 2010, 5, 10036s. [Google Scholar] [CrossRef]
- Toishi, M.; Tanaka, T.; Sugiki, M.; Watanabe, K. Improvement in temperature tolerance of holographic data storage using wavelength tunable laser. Jpn. J. Appl. Phys. 2006, 45, 1297–1304. [Google Scholar] [CrossRef]
- Toishi, M.; Tanaka, T.; Sugiki, M.; Watanabe, K. Temperature tolerance improvement with wavelength tuning laser source in holographic data storage. In Proceedings of the International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series (Optical Society of America), Honolulu, HA, USA, 10–14 July 2005. [Google Scholar]
- Toishi, M.; Tanaka, T.; Fukumoto, A.; Sugiki, M.; Watanabe, K. Evaluation of polycarbonate substrate hologram recording medium regarding implication of birefringence and thermal expansion. Opt. Commun. 2007, 270, 17–24. [Google Scholar] [CrossRef]
- Toishi, M.; Tanaka, T.; Watanabe, K. Experimental analysis in recording transmission and reflection holograms at the same time and location. Appl. Opt. 2006, 45, 6367–6373. [Google Scholar] [CrossRef]
- Ito, T.; Tanaka, K.; Mori, H.; Tanaka, T.; Ishioka, K.; Fukumoto, A.; Okada, K. Improvement in Temperature Tolerance of Collinear Holographic Data Storage. In Proceedings of the 2009 Optical Data Storage Topical Meeting, Lake Buena Vista, FL, USA, 10–13 May 2009; pp. 87–89. [Google Scholar]
- Kogelnik, K. Coupled-wave theory for thick hologram gratings. Bell Syst. Tech. J. 1969, 48, 2909–2947. [Google Scholar] [CrossRef]
- Shimura, T.; Ichimura, S.; Fujimura, R.; Kuroda, K.; Tan, X.; Horimai, H. Analysis of a collinear holographic storage system: Introduction of pixel spread function. Opt. Lett. 2006, 31, 1208–1210. [Google Scholar] [CrossRef]
- King, B.M.; Neifeld, M.A. Sparse modulation coding for increased capacity in volume holographic storage. Appl. Opt. 2000, 41, 1763–1766. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, X.; Wang, K.; Lin, X.; Hao, J.; Lin, D.; Zheng, Q.; Chen, R.; Wang, S.; Tan, X. Combination Compensation Method to Improve the Tolerance of Recording Medium Shrinkage in Collinear Holographic Storage. Photonics 2022, 9, 149. https://doi.org/10.3390/photonics9030149
Qiu X, Wang K, Lin X, Hao J, Lin D, Zheng Q, Chen R, Wang S, Tan X. Combination Compensation Method to Improve the Tolerance of Recording Medium Shrinkage in Collinear Holographic Storage. Photonics. 2022; 9(3):149. https://doi.org/10.3390/photonics9030149
Chicago/Turabian StyleQiu, Xianying, Kun Wang, Xiao Lin, Jianying Hao, Dakui Lin, Qijing Zheng, Ruixian Chen, Suping Wang, and Xiaodi Tan. 2022. "Combination Compensation Method to Improve the Tolerance of Recording Medium Shrinkage in Collinear Holographic Storage" Photonics 9, no. 3: 149. https://doi.org/10.3390/photonics9030149
APA StyleQiu, X., Wang, K., Lin, X., Hao, J., Lin, D., Zheng, Q., Chen, R., Wang, S., & Tan, X. (2022). Combination Compensation Method to Improve the Tolerance of Recording Medium Shrinkage in Collinear Holographic Storage. Photonics, 9(3), 149. https://doi.org/10.3390/photonics9030149