Characterization of the Mueller Matrix: Purity Space and Reflectance Imaging
Abstract
:1. Introduction
2. Literature Review of Polarization Theory
2.1. The Early Years; 1852–1957
2.2. The Lorentz Group and the Spin Equation of Quantum Mechanics; 1963–1987
“The topics to which some contribution is here added include the concatenation of optical operators, the polar decomposition of matrices, the properties of non-perfect polarizers, the measurability of polarization states and optical operators, the decomposability of arbitrary optical systems into sequences of standard ones, and parallel combinations of operators.”
2.3. Deterministic Mueller Matrices and Physical Mueller Matrices; 1981–2000
- Physically admissible; satisfies the Stokes criterion only.
- Physically acceptable; satisfies Cloude’s criterion that the eigenvalues of are nonnegative, only.
- Physically realizable; satisfies both passivity and the Stokes criterion.
- Physically achievable; satisfies passivity and Cloude’s criterion.
2.4. Purity Space and Canonical Mueller Matrices; 2005–2019
3. Discussion: Physical Mueller Matrices and the Indices of Polarimetric Purity
3.1. Canonical Mueller Matrices and Indices of Polarimetric Purity
3.2. Barycentric Eigenvalue Space
3.3. Type-II Canonical Mueller Matrices
3.4. An Example
3.5. Summary
4. Discussion: Reflectance Imaging with a Beam Splitter
4.1. Polarization in Transmittance and Reflectance
4.2. Backscattering through a Reciprocal Medium
4.3. Some Special Cases
4.4. Some Numerical Examples
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Symbols
Eigenvalue product polarimetric purity | |
Vector form of the coherency matrix | |
Coherency matrix | |
Diattenuation vector | |
d | Diattenuation |
Orthogonal coordinate system for purity space | |
Minkowski metric | |
Correlation matrix | |
Stokes parameters | |
Jones matrix | |
Sinclair matrix | |
Kennaugh matrix | |
First and second Lorentz depolarization indices | |
Mueller matrix elements | |
Mueller matrix | |
Mueller spherical sub-matrix | |
Diattenuator Mueller matrix | |
Retarder Mueller matrix | |
Mueller matrix for a perfect reflector | |
Mueller-Sinclair matrix | |
Type-I, II canonical Mueller matrix | |
Polarization (coherency) matrix | |
Vector form of the polarization (coherency) matrix | |
Polarizance vector | |
p | Polarizance |
Degree of spherical purity | |
Degree of polarimetric purity | |
Second Lorentz degree of polarimetric purity | |
Indices of purity | |
Overall purity index | |
Parke matrix | |
Third order polarimetric purity | |
Stokes vector | |
Stokes vector in Chandrasekhar phase basis | |
S | Entropy |
Fourth order polarimetric purity | |
Singular values | |
Trace | |
Orthogonal coordinate system for purity space | |
Coherency vector | |
Polarization coupling matrix, Z-matrix, or state generating matrix | |
Depolarization power | |
Identity matrix with elements in subscript negative | |
transformation matrix, | |
Transformation matrix of elements of the Pauli spin matrices | |
Vector of eigenvalues of the coherency matrix | |
Eigenvalues of the coherency matrix |
References
- Clivas, X.; Marquis-Weible, F.; Salathé, R.P.; Novak, R.P.; Gilgen, H.H. High-resolution reflectometry in biological tissues. Opt. Lett. 1992, 17, 4–6. [Google Scholar] [CrossRef]
- Le Gratiet, A.; Rivet, S.; Dunbreuil, M.; Le Grand, Y. 100 khz Mueller polarimeter in reflection configuration. Opt. Lett. 2015, 40, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Le Gratiet, A.; d’Amora, M.; Duocastello, M.; Marongiu, R.; Bendandi, A.; Giordani, S.; Bianchini, P.; Diaspro, A. Zebra fish structural development in Mueller-matrix scanning microscopy. Sci. Rep. 2019, 9, 19974. [Google Scholar] [CrossRef] [PubMed]
- Le Gratiet, A.; Bendandi, A.; Sheppard, C.J.R.; Diaspro, A. Polarimetric optical scanning microscopy of zebrafish embryonic development using the coherency matrix. J. Biophoton. 2021, 14, e202000494. [Google Scholar] [CrossRef] [PubMed]
- Bueno, J.M.; Campbell, M.C.W. Confocal scanning laser ophthalmoscopy improvement by use of Mueller-matrix polarimetry. Opt. Lett. 2002, 27, 830–832. [Google Scholar] [CrossRef] [PubMed]
- Lara, D.; Dainty, J.C. Axially resolved complete Mueller matrix confocal microscopy. Appl. Opt. 2006, 45, 1917–1930. [Google Scholar] [CrossRef]
- Davidson, M.; Kaufman, K.; Mazor, I.; Cohen, F. An application of interference microscopy to integrated circuit inspection and metrology. Proc. SPIE 1987, 775, 233–247. [Google Scholar]
- Hee, M.R.; Huang, D.; Swanson, E.A.; Fujimoto, J.G. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt Soc. Am. B 1992, 9, 903–908. [Google Scholar] [CrossRef]
- De Boer, J.F.; Milner, T.E.; van Gemert, M.J.C.; Nelson, J.S. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 1997, 22, 934–936. [Google Scholar] [CrossRef] [Green Version]
- Jiao, S.; Wang, L. Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography. Opt. Lett. 2002, 27, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Götzinger, E.; Pircher, M.; Geitzenauer, W.; Ahlers, C.; Baumann, B.; Michels, S.; Schmidt-Erfurth, U.; Hitzenberger, C.K. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Opt. Express 2008, 16, 16410–16422. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Quijano, N.; Marvdashti, T.; Ellerbee, A.K. Enhanced depolarization contrast in polarization- sensitive optical coherence tomography. Opt. Lett. 2016, 41, 2350–2353. [Google Scholar] [CrossRef]
- Van Eeckout, A.; Lizana, A.; Garcia-Caurel, E.; Gil, J.J.; Ossikovski, R.; Campos, J. Synthesis and characterization of depolarizing samples based on the indices of polarimetric purity. Opt. Lett. 2017, 42, 4155–4158. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Wilson, T. Multiple traversing of the object in the scanning microscope. Opt. Acta 1980, 27, 611–624. [Google Scholar] [CrossRef]
- Ode, T. Study on confocal transmission. In Proceedings of the 9th Meeting Japan Society for Laser Microscopy, Kyoto, Japan, 1–5 June 1992; pp. 4–7. [Google Scholar]
- Stokes, G.G. On the composition and resolution of streams of polarized light from different sources. Trans. Camb. Philos. Soc. 1852, 9, 399–416. [Google Scholar]
- Verdet, E. Leçons d’Optique Physique; Imprimeri Impériale: Paris, France, 1869. [Google Scholar]
- Poincaré, H. Théorie Mathématique de la Lumière; Jacques Gabay: Paris, France, 1892. [Google Scholar]
- Soleillet, F. Sur les paramètres caractérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence. Ann. Phys. 1929, 12, 23–59. [Google Scholar] [CrossRef]
- Jones, R.C. A new calculus for the treatment of optical systems. I. Description and discussions of the calculus. J. Opt. Soc. Am. 1941, 31, 488–493. [Google Scholar] [CrossRef]
- Perrin, F. Theory of light scattering by macroscopically isotropic bodies. J. Chem. Phys. 1942, 10, 415–427. [Google Scholar] [CrossRef]
- Jones, R.C. A new calculus for the treatment of optical systems. V. A more general formulation, and description of another calculus. J. Opt. Soc. Am. 1947, 37, 107–110. [Google Scholar] [CrossRef]
- Chandrasekhar, S. On the radiative equilibrium of a stellar atmos- phere: XVII. Astrophys. J. 1947, 105, 441–460. [Google Scholar] [CrossRef]
- Parke, N.G., III. Matrix Optics. Ph.D. Thesis, MIT, Cambridge, MA, USA, 1948. [Google Scholar]
- Jones, R.C. A new calculus for the treatment of optical systems. VII. Properties of the N-matrices. J. Opt. Soc. Am. 1948, 38, 671–685. [Google Scholar] [CrossRef]
- Sinclair, G. The transmision and reception of elipticaly polarized waves. Proc. IRE 1950, 38, 148–151. [Google Scholar] [CrossRef]
- Falkoff, D.L.; MacDonald, J.E. On the Stokes parameters for polarized radiation. J. Opt. Soc. Am. 1951, 41, 861–862. [Google Scholar] [CrossRef]
- Kennaugh, E. Polarization Properties of Radar Reflections. Master’s Thesis, Ohio State University, Columbus, OH, USA, 1950. [Google Scholar]
- Van de Hulst, H. Light Scattering by Small Particles; Wiley: New York, NY, USA, 1957. [Google Scholar]
- Barakat, R. Theory of the coherency matrix for light of arbitrary spectral bandwidth. J. Opt. Soc. Am. 1963, 53, 317–323. [Google Scholar] [CrossRef]
- O’Neil, E.L. Introduction to Statistical Optics; Addison-Wesley: Reading, MA, USA, 1963. [Google Scholar]
- Marathay, A.S. Operator formalism in the theory of partial polarization. J. Opt. Soc. Am. 1965, 55, 969–980. [Google Scholar] [CrossRef]
- Sekera, Z. Scattering matrices and reciprocity relationships for various representations of the state of polarization. J. Opt. Soc. Am. 1966, 56, 1732–1740. [Google Scholar] [CrossRef]
- Go, N. Optical activity of anisotropic solutions: II. J. Phys. Soc. Jpn. 1967, 23, 88–97. [Google Scholar] [CrossRef]
- Schmieder, R.W. Stokes-algebra formalism. J. Opt. Soc. Am. 1969, 59, 297–302. [Google Scholar] [CrossRef]
- Huynen, J.R. Phenomological Theory of Radar Targets; Drukkerij Bronder-Offset N.V.: Rotterdam, The Netherlands, 1970. [Google Scholar]
- Whitney, C. Pauli-algebraic operators in polarization optics. J. Opt. Soc. Am. 1971, 61, 1207–1213. [Google Scholar] [CrossRef]
- Samson, J.C. Descriptions of the polarization states of vector processes: Applications to ULF magnetic fields. Geophys. J. R. Astron. Soc. 1973, 34, 403–419. [Google Scholar] [CrossRef] [Green Version]
- Robson, B.A. The Theory of Polarization Phenomena; Clarendon Press: Oxford, UK, 1974. [Google Scholar]
- Jensen, H.P.; Schellman, J.A.; Troxell, T. Modulation techniques in polarization spectroscopy. Appl. Spectrosc. 1978, 32, 192–200. [Google Scholar] [CrossRef]
- Schellman, J.A.; Jensen, H.P. Optical spectroscopy of oriented molecules. Chem. Rev. 1987, 87, 1359–1399. [Google Scholar] [CrossRef]
- Schönhofer, A.; Kuball, H.-G.; Puebla, C. Optical activity of oriented molecules. IX. Phenomenological Mueller matrix description of thick samples and of optical elements. Chem. Phys. 1983, 76, 453–467. [Google Scholar] [CrossRef]
- Schönhofer, A.; Kuball, H.-G. Symmetrery properties of the Mueller matrix. Chem. Phys. 1987, 115, 159–167. [Google Scholar] [CrossRef]
- Barakat, R. Bilinear constraints between elements of the 4×4 Mueller-Jones transfer matrix of polarization theory. Opt. Commun. Am. 1981, 38, 159–161. [Google Scholar] [CrossRef]
- Fry, E.S.; Kattawar, G.W. Relationships between elements of the Stokes matrix. Appl. Opt. 1981, 20, 2811–2814. [Google Scholar] [CrossRef]
- Simon, R. The connection between Mueller and Jones matrices of polarization optics. Opt. Commun. 1982, 42, 293–297. [Google Scholar] [CrossRef]
- Gil, P.P.; Bernabeu, E. A depolarization criterion in Mueller matrices. Opt. Acta 1985, 32, 259–261. [Google Scholar] [CrossRef]
- Gil, P.P.; Bernabeu, E. Depolarization and polarization indices of an optical system. Opt. Acta 1986, 33, 185–189. [Google Scholar] [CrossRef]
- Gil, P.P.; Bernabeu, E. Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix. Optik 1987, 76, 67–71. [Google Scholar]
- Cloude, S.R. Group theory and polarization algebra. Optik 1986, 75, 26–36. [Google Scholar]
- Kim, K.; Mandel, L.; Wolf, E. Relationship between Jones and Mueller matrices for random media. J. Opt. Soc. Am. A 1987, 4, 433–437. [Google Scholar] [CrossRef]
- Barakat, R. Conditions for the physical realizability of polarization matrices characterizing passive systems. J. Mod. Opt. 1987, 34, 1535–1544. [Google Scholar] [CrossRef]
- Simon, R. Mueller matrices and depolarization criteria. J. Mod. Opt. 1987, 34, 569–575. [Google Scholar] [CrossRef]
- Chipman, R.A. Polarization Aberrations. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1987. [Google Scholar]
- Holm, W.; Barnes, R. On radiation polarization mixed target state decomposition techniques. In Proceedings of the 1988 Radar Conference, Ann Arbor, MI, USA, 20–21 April 1988; pp. 249–254. [Google Scholar]
- Cloude, S.R. Conditions for the physical realisability of matrix operators in polarimetry. Proc. SPIE 1989, 116, 177–185. [Google Scholar]
- Simon, R. Nondepolarizing systems and degree of polarization. Opt. Commun. 1990, 77, 349–354. [Google Scholar] [CrossRef]
- Silverman, M.P.; Badoz, J. Light reflection from a naturally optically active birefringent medium. J. Opt. Soc. Am. A 1990, 7, 1163–1173. [Google Scholar] [CrossRef]
- Mishchenko, M.I. Enhanced backscattering of polarized light from discrete random media: In exactly the backscattering direction. J. Opt. Soc. Am. A 1992, 9, 978–982. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Hovenier, J.W. Depolarization of light backscattered by randomly oriented nonspherical particles. Opt. Lett. 1995, 20, 1356–1358. [Google Scholar] [CrossRef]
- Sanjay Kumar, M.; Simon, R. Characterization of Mueller matrices in polarization optics. Opt. Commun. 1992, 88, 464–470. [Google Scholar] [CrossRef]
- Xing, Z.-F. On the deterministic and non-deterministic Mueller matrix. J. Mod. Opt. 1992, 39, 461–484. [Google Scholar] [CrossRef]
- Givens, C.R.; Kostinski, A.B. A simple necessary and sufficient condition on physically realizable Mueller matrices. J. Mod. Opt. 1993, 40, 471–481. [Google Scholar] [CrossRef]
- Van der Mee, C.V.M. An eigenvalue criterion for matrices transforming Stokes parameters. J. Math. Phys. 1993, 34, 5072–5088. [Google Scholar] [CrossRef]
- Anderson, D.G.M.; Barakat, R. Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix. J. Opt. Soc. Am. A 1994, 11, 2305–2319. [Google Scholar] [CrossRef]
- Sridar, R.; Simon, R. Normal form for Mueller matrices in polarization optics. J. Mod. Opt. 1994, 41, 1903–1915. [Google Scholar] [CrossRef]
- Hovenier, J.W. Structure of a general pure Mueller matrix. Appl. Opt. 1994, 33, 8318–8324. [Google Scholar] [CrossRef]
- Hovenier, J.W.; Van der Mee, C.V.M. Testing scattering matrices; A compendium of recipes. J. Quant. Spectrosc. Radiat. Transf. 1996, 55, 649–661. [Google Scholar] [CrossRef]
- Lu, S.-Y.; Chipman, R.A. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 1996, 13, 1106–1113. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Lüneburg, E.; Cloude, S.R. Radar versus optical polarimetry. Proc. SPIE 1997, 3120, 361–372. [Google Scholar]
- Bolshakov, Y.; van der Mee, C.V.M.; Ran, A.C.M.; Reichstein, B.; Rodman, L. Polar decompositions in finite dimensional indefinite scalar product spaces: Special cases and applications. Oper. Theory Adv. Appl. 1996, 87, 61–94, Erratum in Integr. Equ. Oper. Theory 1997, 27, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.V.G.; Mallesh, K.S.; Sudha. On the algebraic characterization of a Mueller matrix in polarization optics, I. Identifying a Mueller matrix from its N matrix. J. Mod. Opt. 1998, 45, 955–987. [Google Scholar] [CrossRef]
- Rao, A.V.G.; Mallesh, K.S.; Sudha. On the algebraic characterization of a Mueller matrix in polarization optics, II. Necessary and sufficient conditions for Jones-derived Mueller matrices. J. Mod. Opt. 1998, 45, 989–999. [Google Scholar]
- Gil, J.J. Characteristic properties of Mueller matrices. J. Opt. Soc. Am. 2000, 17, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Aiello, A.; Woerdman, J.P. Physical bounds to the entropy-depolarization relation in random light scattering. Phys. Rev. Lett. 2005, 94, 090406. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R. Depolarization by aerosols: Entropy of the Amsterdam light scattering database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1665–1676. [Google Scholar] [CrossRef]
- Cloude, S.R. Polarization: Applications in Remote Sensing; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Ossikovski, R. Analysis of depolarizing Mueller matrices through a symmetric decomposition. J. Opt. Soc. Am. A 2009, 26, 1109–1118. [Google Scholar] [CrossRef]
- Simon, B.N.; Simon, S.; Mukunda, N.; Gori, F.; Santarsiero, M.; Borghi, R.; Simon, R. A complete characterization of pre- Mueller and Mueller matrices in polarization optics. J. Opt. Soc. Am. A 2010, 27, 188–199. [Google Scholar] [CrossRef]
- Ossikovski, R. Canonical forms of depolarizing Mueller matrices. J. Opt. Soc. Am. A 2010, 27, 123–130. [Google Scholar] [CrossRef]
- Ossikovski, R. Alternative depolarization criteria for Mueller matrices. J. Opt. Soc. Am. A 2010, 27, 808–814. [Google Scholar] [CrossRef]
- Ossikovski, R. Differential matrix formalism for depolarizing anisotropic media. Opt. Lett. 2011, 36, 2330–2332. [Google Scholar] [CrossRef]
- San José, I.; Gil, J.J. Invariant indices of polarimetric purity. Generalized indices of purity for n × n covariance matrices. Opt. Commun. 2011, 284, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Gil, P.P. Components of purity of a Mueller matrix. J. Opt. Soc. Am. A 2011, 28, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, O.; Garcia-Caurel, E.; Ossikovski, R. Elementary polarization properties in the backscattering configuration. Opt. Lett. 2014, 39, 6050–6053. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R. Geometry of the Mueller matrix spectral decomposition. J. Opt. Soc. Am. A 2016, 33, 1331–1340. [Google Scholar] [CrossRef]
- Tariq, A.; Li, P.; Chen, D.; Lv, D.; Ma, H. Physically realizable space for the purity-depolarization plane for polarized light scattering media. Phys. Rev. Lett. 2017, 119, 033202. [Google Scholar] [CrossRef] [PubMed]
- Kuntman, E.; Kuntman, M.A.; Arteaga, O. Vector and matrix states for Mueller matrices of nondepolarizing optical media. J. Opt. Soc. Am. A 2017, 34, 80–86. [Google Scholar] [CrossRef]
- Ossikovski, R.; Vizet, J. Eigenvalue-based depolarization metric spaces for Mueller matrices. J. Opt. Soc. Am. A 2019, 36, 1173–1186. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. Eigenvalues of the coherency matrix for exact backscattering. J. Opt. Soc. Am. A 2019, 36, 1540–1550. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. Eigenvectors of polarization coherency matrices. J. Opt. Soc. Am. A 2020, 37, 1143–1154. [Google Scholar] [CrossRef]
- Nickalls, R.W.D. The quartic equation: Invariants and Euler’s solution revealed. Math. Gaz. 2009, 93, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Nickalls, R.W.D. The quartic equation: Alignment with an equivalent tetrahedron. Math. Gaz. 2012, 96, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Nickalls, R.W.D. A new approach to solving the cubic: Cardan’s solution revealed. Math. Gaz. 1993, 77, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, C.J.R. Partial polarization in three dimensions. J. Opt. Soc. Am. A 2011, 28, 2655–2659. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Geometric representation for partial polarization in three dimensions. Opt. Lett. 2012, 37, 2772–2774. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. Polarization in reflectance imaging. J. Opt. Soc. Am. A 2020, 37, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Flack, J.H.; Crooker, P.P.; Svoboda, R.C. Measurement of the Mueller matrices of blue-phase structures. Phys. Rev. A 1982, 26, 723–726. [Google Scholar] [CrossRef]
- Dennis, M. Geometric interpretation of the three-dimensional coherence matrix for nonparaxial polarization. J. Opt. A Pure Appl. Opt. 1982, 6, S26–S31. [Google Scholar] [CrossRef]
- Sheppard, C.J.R. Parameterization of the Mueller matrix. J. Opt. Soc. Am. A 2016, 33, 2323–2332. [Google Scholar] [CrossRef]
- Petrucelli, J.C.; Moore, N.J.; Alonso, M.A. Two methods for modeling the propagation of the coherence and polarization properties of nonparaxial fields. Opt. Commun. 2010, 283, 4457–4466. [Google Scholar] [CrossRef]
- Qian, X.F.; Eberley, J.H. Entanglement and classical polarization states. Opt. Lett. 2011, 36, 4110–4112. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.J. Geometric interpretation and general classification of three-dimensional polarization states through the intrinsic Stokes parameters. Photonics 2021, 8, 315. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. Purity of three-dimensional polarization. J. Opt. Soc. Am. A 2022, 39, 6–16. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Castello, M.; Diaspro, A. Expressions for parallel decomposition of the Mueller matrix. J. Opt. Soc. Am. A 2016, 33, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C.J.R.; Le Gratiet, A.; Diaspro, A. Factorization of the coherency matrix of polarization optics. J. Opt. Soc. Am. A 2018, 35, 586–590. [Google Scholar] [CrossRef]
- Sheppard, C.J.R.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. Coherency and differential Mueller matrices for polarizing media. J. Opt. Soc. Am. A 2018, 35, 2058–2069. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheppard, C.J.R.; Bendandi, A.; Le Gratiet, A.; Diaspro, A. Characterization of the Mueller Matrix: Purity Space and Reflectance Imaging. Photonics 2022, 9, 88. https://doi.org/10.3390/photonics9020088
Sheppard CJR, Bendandi A, Le Gratiet A, Diaspro A. Characterization of the Mueller Matrix: Purity Space and Reflectance Imaging. Photonics. 2022; 9(2):88. https://doi.org/10.3390/photonics9020088
Chicago/Turabian StyleSheppard, Colin J. R., Artemi Bendandi, Aymeric Le Gratiet, and Alberto Diaspro. 2022. "Characterization of the Mueller Matrix: Purity Space and Reflectance Imaging" Photonics 9, no. 2: 88. https://doi.org/10.3390/photonics9020088
APA StyleSheppard, C. J. R., Bendandi, A., Le Gratiet, A., & Diaspro, A. (2022). Characterization of the Mueller Matrix: Purity Space and Reflectance Imaging. Photonics, 9(2), 88. https://doi.org/10.3390/photonics9020088