Silicon-Based Graphene Electro-Optical Modulators
Abstract
:1. Introduction
2. Technologies for Si-Based Graphene Modulator
2.1. Principle
2.2. Graphene Electro-Absorption (EA) Modulator
2.3. Graphene Electro-Refractive (ER) Modulator
3. Potential Applications with Graphene EO Modulators
3.1. Optical Communications
3.2. Microwave Photonics (MWP)
4. Challenges and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cisco Annual Internet Report (2018–2023) White Paper. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 28 December 2021).
- IDC. Global ICT Spending-forecast 2020–2023. Available online: https://www.idc.com/promo/global-ict-spending/forecast (accessed on 28 December 2021).
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003. [Google Scholar] [CrossRef]
- Shu, H.; Chang, L.; Tao, Y.; Shen, B.; Xie, W.; Jin, M.; Netherton, A.; Tao, Z.; Zhang, X.; Chen, R. Bridging microcombs and silicon photonic engines for optoelectronics systems. arXiv 2021, arXiv:2110.12856. [Google Scholar]
- Pelucchi, E.; Fagas, G.; Aharonovich, I.; Englund, D.; Figueroa, E.; Gong, Q.; Hannes, H.; Liu, J.; Lu, C.Y.; Matsuda, N.; et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 2021. [Google Scholar] [CrossRef]
- Westerveld, W.J.; Mahmud-Ul-Hasan, M.; Shnaiderman, R.; Ntziachristos, V.; Rottenberg, X.; Severi, S.; Rochus, V. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photonics 2021, 15, 341–345. [Google Scholar] [CrossRef]
- Tasker, J.F.; Frazer, J.; Ferranti, G.; Allen, E.J.; Brunel, L.F.; Tanzilli, S.; D’Auria, V.; Matthews, J.C.F. Silicon photonics interfaced with integrated electronics for 9 GHz measurement of squeezed light. Nat. Photonics 2021, 15, 11–15. [Google Scholar] [CrossRef]
- Rogers, C.; Piggott, A.Y.; Thomson, D.J.; Wiser, R.F.; Opris, I.E.; Fortune, S.A.; Compston, A.J.; Gondarenko, A.; Meng, F.; Chen, X.; et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 2021, 590, 256–261. [Google Scholar] [CrossRef]
- Datta, I.; Chae, S.H.; Bhatt, G.R.; Tadayon, M.A.; Li, B.; Yu, Y.; Park, C.; Park, J.; Cao, L.; Basov, D.N.; et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics 2020, 14, 256–262. [Google Scholar] [CrossRef]
- Chang, L.; Xie, W.; Shu, H.; Yang, Q.F.; Shen, B.; Boes, A.; Peters, J.D.; Jin, W.; Xiang, C.; Liu, S.; et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun. 2020, 11, 1331. [Google Scholar] [CrossRef]
- Idjadi, M.H.; Aflatouni, F. Nanophotonic phase noise filter in silicon. Nat. Photonics 2020, 14, 234–239. [Google Scholar] [CrossRef]
- Huang, C.; Fujisawa, S.; de Lima, T.F.; Tait, A.N.; Blow, E.C.; Tian, Y.; Bilodeau, S.; Jha, A.; Yaman, F.; Peng, H.T.; et al. A silicon photonic–electronic neural network for fibre nonlinearity compensation. Nat. Electron. 2021, 4, 837–844. [Google Scholar] [CrossRef]
- Ummethala, S.; Harter, T.; Koehnle, K.; Li, Z.; Muehlbrandt, S.; Kutuvantavida, Y.; Kemal, J.; Marin-Palomo, P.; Schaefer, J.; Tessmann, A.; et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics 2019, 13, 519–524. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Schmidt, B.; Pradhan, S.; Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 2005, 435, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Rahim, A.; Goyvaerts, J.; Szelag, B.; Fedeli, J.M.; Absil, P.; Aalto, T.; Harjanne, M.; Littlejohns, C.; Reed, G.; Winzer, G.; et al. Open-Access Silicon Photonics Platforms in Europe. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Timurdogan, E.; Su, Z.; Poulton, C.V.; Byrd, M.J.; Xin, S.; Shiue, R.J.; Moss, B.R.; Hosseini, E.S.; Watts, M.R. AIM Process Design Kit (AIMPDKv2.0): Silicon Photonics Passive and Active Component Libraries on a 300 mm Wafer. In Proceedings of the Optical Fiber Communication Conference 2018, San Diego, CA, USA, 11–15 March 2018. [Google Scholar] [CrossRef]
- Haffner, C.; Chelladurai, D.; Fedoryshyn, Y.; Josten, A.; Baeuerle, B.; Heni, W.; Watanabe, T.; Cui, T.; Cheng, B.; Saha, S.; et al. Low-loss plasmon-assisted electro-optic modulator. Nature 2018, 556, 483–486. [Google Scholar] [CrossRef]
- Eltes, F.; Villarreal-Garcia, G.E.; Caimi, D.; Siegwart, H.; Gentile, A.A.; Hart, A.; Stark, P.; Marshall, G.D.; Thompson, M.G.; Barreto, J.; et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 2020, 19, 1164–1168. [Google Scholar] [CrossRef]
- Gehl, M.; Long, C.; Trotter, D.; Starbuck, A.; Pomerene, A.; Wright, J.B.; Melgaard, S.; Siirola, J.; Lentine, A.L.; DeRose, C. Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures. Optica 2017, 4, 374–382. [Google Scholar] [CrossRef]
- Dong, M.; Clark, G.; Leenheer, A.J.; Zimmermann, M.; Dominguez, D.; Menssen, A.J.; Heim, D.; Gilbert, G.; Englund, D.; Eichenfield, M. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photonics 2022, 16, 59–65. [Google Scholar] [CrossRef]
- He, M.; Xu, M.; Ren, Y.; Jian, J.; Ruan, Z.; Xu, Y.; Gao, S.; Sun, S.; Wen, X.; Zhou, L.; et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit·s−1 and beyond. Nat. Photonics 2019, 13, 359–364. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef]
- Lu, G.W.; Hong, J.; Qiu, F.; Spring, A.M.; Kashino, T.; Oshima, J.; Ozawa, M.a.; Nawata, H.; Yokoyama, S. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit·s−1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun. 2020, 11, 4224. [Google Scholar] [CrossRef]
- Hiraki, T.; Aihara, T.; Hasebe, K.; Takeda, K.; Fujii, T.; Kakitsuka, T.; Tsuchizawa, T.; Fukuda, H.; Matsuo, S. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photonics 2017, 11, 482–485. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Phare, C.T.; Daniel Lee, Y.H.; Cardenas, J.; Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 2015, 9, 511–514. [Google Scholar] [CrossRef]
- Liu, C.; Chen, H.; Wang, S.; Liu, Q.; Jiang, Y.G.; Zhang, D.W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Haffner, C.; Heni, W.; Fedoryshyn, Y.; Niegemann, J.; Melikyan, A.; Elder, D.L.; Baeuerle, B.; Salamin, Y.; Josten, A.; Koch, U.; et al. All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics 2015, 9, 525–528. [Google Scholar] [CrossRef]
- Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J.J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 2017, 11, 366–371. [Google Scholar] [CrossRef]
- Neumaier, D.; Pindl, S.; Lemme, M.C. Integrating graphene into semiconductor fabrication lines. Nat. Mater. 2019, 18, 525–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Zhu, X.; Galili, M.; Frandsen, L.H.; Hu, H.; Xiao, S.; Dong, J.; Ding, Y.; Oxenløwe, L.K.; Zhang, X. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics 2020, 9, 2377–2385. [Google Scholar] [CrossRef]
- Giambra, M.A.; Mišeikis, V.; Pezzini, S.; Marconi, S.; Montanaro, A.; Fabbri, F.; Sorianello, V.; Ferrari, A.C.; Coletti, C.; Romagnoli, M. Wafer-Scale Integration of Graphene-Based Photonic Devices. ACS Nano 2021, 15, 3171–3187. [Google Scholar] [CrossRef]
- Liu, M.; Yin, X.; Zhang, X. Double-Layer Graphene Optical Modulator. Nano Lett. 2012, 12, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, H.; Terrés, B.; Orsini, L.; Montanaro, A.; Sorianello, V.; Pantouvaki, M.; Watanabe, K.; Taniguchi, T.; Thourhout, D.V.; Romagnoli, M.; et al. 2D-3D integration of hexagonal boron nitride and a high-κ dielectric for ultrafast graphene-based electro-absorption modulators. Nat. Commun. 2021, 12, 1070. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, C.; Asselberghs, I.; Brems, S.; Huyghebaert, C.; Van Campenhout, J.; Van Thourhout, D.; Pantouvaki, M. 5 × 25 Gbit/s WDM transmitters based on passivated graphene-silicon electro-absorption modulators. Appl. Opt. 2020, 59, 1156–1162. [Google Scholar] [CrossRef]
- Sun, Z.; Chang, H. Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology. ACS Nano 2014, 8, 4133–4156. [Google Scholar] [CrossRef] [PubMed]
- Marconi, S.; Giambra, M.A.; Montanaro, A.; Mišeikis, V.; Soresi, S.; Tirelli, S.; Galli, P.; Buchali, F.; Templ, W.; Coletti, C.; et al. Photo thermal effect graphene detector featuring 105 Gbit·s−1 NRZ and 120 Gbit·s−1 PAM4 direct detection. Nat. Commun. 2021, 12, 806. [Google Scholar] [CrossRef] [PubMed]
- Schuler, S.; Muench, J.E.; Ruocco, A.; Balci, O.; Thourhout, D.v.; Sorianello, V.; Romagnoli, M.; Watanabe, K.; Taniguchi, T.; Goykhman, I.; et al. High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat. Commun. 2021, 12, 3733. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Jiang, Z.; Tong, L.; Deng, W.; Gao, X.; Huang, X.; Zhou, H.; Yu, Y.; Ye, L.; et al. Ultrahigh-speed graphene-based optical coherent receiver. Nat. Commun. 2021, 12, 5076. [Google Scholar] [CrossRef]
- Guo, J.; Li, J.; Liu, C.; Yin, Y.; Wang, W.; Ni, Z.; Fu, Z.; Yu, H.; Xu, Y.; Shi, Y.; et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light. Sci. Appl. 2020, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.S.; Freitas, A.P.; Gil-Molina, A.; Shim, E.; Zhu, Y.; Hone, J.; Lipson, M. Scalable graphene platform for Tbits/s data transmission. arXiv 2020, arXiv:2011.08832. [Google Scholar]
- Mak, K.F.; Ju, L.; Wang, F.; Heinz, T.F. Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 2012, 152, 1341–1349. [Google Scholar] [CrossRef]
- Rouhi, N.; Capdevila, S.; Jain, D.; Zand, K.; Wang, Y.Y.; Brown, E.; Jofre, L.; Burke, P. Terahertz graphene optics. Nano Res. 2012, 5, 667–678. [Google Scholar] [CrossRef]
- Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A.K.; Ferrari, A.C.; Romagnoli, M. Graphene-silicon phase modulators with gigahertz bandwidth. Nat. Photonics 2018, 12, 40–44. [Google Scholar] [CrossRef]
- Sorianello, V.; De Angelis, G.; Cassese, T.; Midrio, M.; Romagnoli, M.; Mohsin, M.; Otto, M.; Neumaier, D.; Asselberghs, I.; Van Campenhout, J.; et al. Complex effective index in graphene-silicon waveguides. Opt. Express 2016, 24, 29984–29993. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Liu, C.H.; Liu, C.H.; Zhong, Z.; Norris, T.B. Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry. Appl. Phys. Lett. 2014, 104, 261909. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Chiang, K.S. Experimental verification of optical models of graphene with multimode slab waveguides. Opt. Lett. 2016, 41, 2129–2132. [Google Scholar] [CrossRef]
- Lao, J.; Tao, J.; Wang, Q.J.; Huang, X.G. Tunable graphene-based plasmonic waveguides: Nano modulators and nano attenuators. Laser Photonics Rev. 2014, 8, 569–574. [Google Scholar] [CrossRef]
- Sorianello, V.; Midrio, M.; Romagnoli, M. Design optimization of single and double layer Graphene phase modulators in SOI. Opt. Express 2015, 23, 6478–6490. [Google Scholar] [CrossRef]
- Hu, Y.; Pantouvaki, M.; Van Campenhout, J.; Brems, S.; Asselberghs, I.; Huyghebaert, C.; Absil, P.; Van Thourhout, D. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photonics Rev. 2016, 10, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Alessandri, C.; Asselberghs, I.; Brems, S.; Huyghebaert, C.; Van Campenhout, J.; Van Thourhout, D.; Pantouvaki, M. High speed single-layer graphene-Si electro-absorption modulator. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim 2018, Hong Kong, China, 29 July–3 August 2018. [Google Scholar] [CrossRef]
- Alessandri, C.; Asselberghs, I.; Brems, S.; Huyghebaert, C.; Van Campenhout, J.; Van Thourhout, D.; Pantouvaki, M. High speed graphene-silicon electro-absorption modulators for the O-band and C-band. Jpn. J. Appl. Phys. 2020, 59, 052008. [Google Scholar] [CrossRef]
- Mohsin, M.; Schall, D.; Otto, M.; Noculak, A.; Neumaier, D.; Kurz, H. Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt. Express 2014, 22, 15292–15297. [Google Scholar] [CrossRef]
- Youngblood, N.; Anugrah, Y.; Ma, R.; Koester, S.J.; Li, M. Multifunctional Graphene Optical Modulator and Photodetector Integrated on Silicon Waveguides. Nano Lett. 2014, 14, 2741–2746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalir, H.; Xia, Y.; Wang, Y.; Zhang, X. Athermal Broadband Graphene Optical Modulator with 35 GHz Speed. ACS Photonics 2016, 3, 1564–1568. [Google Scholar] [CrossRef]
- Giambra, M.A.; Sorianello, V.; Miseikis, V.; Marconi, S.; Montanaro, A.; Galli, P.; Pezzini, S.; Coletti, C.; Romagnoli, M. High-speed double layer graphene electro-absorption modulator on SOI waveguide. Opt. Express 2019, 27, 20145–20155. [Google Scholar] [CrossRef]
- Sorianello, V.; Contestabile, G.; Midrio, M.; Pantouvaki, M.; Asselbergs, I.; Van Campenhout, J.; Huyghebaerts, C.; D’Errico, A.; Galli, P.; Romagnoli, M. Chirp management in silicon-graphene electro absorption modulators. Opt. Express 2017, 25, 19371–19381. [Google Scholar] [CrossRef] [Green Version]
- Sorianello, V.; Contestabile, G.; Midrio, M.; Pantouvaki, M.; Asselbergs, I.; Campenhout, J.V.; Huyghebaerts, C.; Romagnoli, M. Optical Pre-Emphasis by Cascaded Graphene Electro Absorption Modulators. IEEE Photonics Technol. Lett. 2019, 31, 955–958. [Google Scholar] [CrossRef]
- Lee, B.S.; Kim, B.; Freitas, A.P.; Mohanty, A.; Zhu, Y.; Bhatt, G.R.; Hone, J.; Lipson, M. High-performance integrated graphene electro-optic modulator at cryogenic temperature. Nanophotonics 2021, 10, 99–104. [Google Scholar] [CrossRef]
- Qiu, C.; Gao, W.; Vajtai, R.; Ajayan, P.M.; Kono, J.; Xu, Q. Efficient Modulation of 1.55 μm Radiation with Gated Graphene on a Silicon Microring Resonator. Nano Lett. 2014, 14, 6811–6815. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Zhu, X.; Xiao, S.; Hu, H.; Frandsen, L.H.; Mortensen, N.A.; Yvind, K. Effective Electro-Optical Modulation with High Extinction Ratio by a Graphene–Silicon Microring Resonator. Nano Lett. 2015, 15, 4393–4400. [Google Scholar] [CrossRef] [Green Version]
- Ansell, D.; Radko, I.P.; Han, Z.; Rodriguez, F.J.; Bozhevolnyi, S.I.; Grigorenko, A.N. Hybrid graphene plasmonic waveguide modulators. Nat. Commun. 2015, 6, 8846. [Google Scholar] [CrossRef]
- Ding, Y.; Guan, X.; Zhu, X.; Hu, H.; Bozhevolnyi, S.I.; Oxenløwe, L.K.; Jin, K.J.; Mortensen, N.A.; Xiao, S. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale 2017, 9, 15576–15581. [Google Scholar] [CrossRef] [Green Version]
- Hao, R.; Du, W.; Chen, H.; Jin, X.; Yang, L.; Li, E. Ultra-compact optical modulator by graphene induced electro-refraction effect. Appl. Phys. Lett. 2013, 103, 061116. [Google Scholar] [CrossRef]
- Mohsin, M.; Neumaier, D.; Schall, D.; Otto, M.; Matheisen, C.; Lena Giesecke, A.; Sagade, A.A.; Kurz, H. Experimental verification of electro-refractive phase modulation in graphene. Sci. Rep. 2015, 5, 10967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, H.; Su, Z.; Huang, L.; Wu, Z.; Wang, X.; Zhang, Z.; Zhou, Z. Significantly High Modulation Efficiency of Compact Graphene Modulator Based on Silicon Waveguide. Sci. Rep. 2018, 8, 991. [Google Scholar] [CrossRef] [PubMed]
- Datta, I.; Phare, C.T.; Dutt, A.; Mohanty, A.; Lipson, M. Integrated Graphene Electro-Optic Phase Modulator. In Proceedings of the CLEO: Science and Innovations 2017, San Jose, CA, USA, 14–19 May 2017. [Google Scholar] [CrossRef]
- Shu, H.; Deng, Q.; Jin, M.; Tao, Y.; Wang, X.; Zhou, Z. Efficient Graphene Phase Modulator Based on a Polarization Multiplexing Optical Circuit. In Proceedings of the 2019 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar]
- Shu, H.; Wu, Z.; Li, Y.; Wang, X.; Li, Y.; Zhou, Z. High Efficiency Graphene Phase Modulator Based on Silicon Spiral Waveguide. In Proceedings of the Asia Communications and Photonics Conference 2017, Guangzhou, China, 10–13 November 2017. [Google Scholar] [CrossRef]
- Mohsin, M.; Schall, D.; Otto, M.; Chmielak, B.; Suckow, S.; Neumaier, D. Towards the Predicted High Performance of Waveguide Integrated Electro-Refractive Phase Modulators Based on Graphene. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Wu, C.; Brems, S.; Asselberghs, I.; Huyghebaert, C.; Sorianello, V.; Romagnoli, M.; Van Campenhout, J.; Van Thourhout, D.; Pantouvaki, M. Hybrid Graphene-WS2 Mach-Zehnder modulator on passive silicon waveguide. In Proceedings of the 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Virtual, Munich, Germany, 21–25 June 2021. [Google Scholar]
- Datta, I.; Jimenez Gordillo, O.A.; Chae, S.H.; Hone, J.; Lipson, M. Platform for electrically reconfigurable ring resonator based on TMD-graphene composite waveguides. In Proceedings of the CLEO: Science and Innovations 2021, San Jose, CA, USA, 9–14 May 2021. [Google Scholar] [CrossRef]
- Bao, Q.; Zhang, H.; Wang, B.; Ni, Z.; Lim, C.H.Y.X.; Wang, Y.; Tang, D.Y.; Loh, K.P. Broadband graphene polarizer. Nat. Photonics 2011, 5, 411–415. [Google Scholar] [CrossRef]
- Fandiño, J.S.; Muñoz, P.; Doménech, D.; Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photonics 2017, 11, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Phare, C.T.; Cardenas, J.; Lee, Y.H.D.; Lipson, M. Linear Graphene on Silicon Nitride Electroabsorption Modulators for RF-Over-Fiber Links. In Proceedings of the CLEO: Science and Innovations 2016, San Jose, CA, USA, 5–10 June 2016. [Google Scholar] [CrossRef]
- Tao, Y.; Shu, H.; Jin, M.; Wang, X.; Zhou, L.; Zou, W. Numerical investigation of the linearity of graphene-based silicon waveguide modulator. Opt. Express 2019, 27, 9013–9031. [Google Scholar] [CrossRef]
- Montanaro, A.; Sorianello, V.; Giambra, M.A.; Mišeikis, V.; Pezzini, S.; Giorgi, L.; D’Errico, A.; Bigongiari, A.; Cavaliere, F.; Coletti, C.; et al. Optically enabled graphene-based transmitter for Gbit/s links at 93 GHz carrier frequency. In Proceedings of the Photonics in Switching and Computing 2021, Washington, DC, USA, 27–29 September 2021. [Google Scholar]
- Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F.H.L.; Huyghebaert, C.; Neumaier, D.; Galli, P.; Templ, W.; D’Errico, A.; Ferrari, A.C. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 2018, 3, 392–414. [Google Scholar] [CrossRef] [Green Version]
- Cassese, T.; Giambra, M.A.; Sorianello, V.; De Angelis, G.; Midrio, M.; Pantouvaki, M.; Van Campenhout, J.; Asselberghs, I.; Huyghebaert, C.; D’Errico, A.; et al. Capacitive actuation and switching of add-drop graphene-silicon micro-ring filters. Photonics Res. 2017, 5, 762–766. [Google Scholar] [CrossRef] [Green Version]
Types | Graphene Stack Structure | Dielectric/ Thickness (nm) | Waveguide Stucture | Length or Radius (μm) | Modulation Efficiency/Depth | Speed/BW | Year | Ref |
---|---|---|---|---|---|---|---|---|
EA | GOS | AlO/7 | Si-strip | 40 | NA/0.1 dBm | NA/1.0 GHz | 2011 | [26] |
EA | GOS | SiO/5 | Si-slab | 50 | 1.5 dB·V/NA | 10 Gbps/5.9 GHz | 2016 | [51] |
EA | GOS | SiO/5 | Si-slab | 25 | NA/0.026 dBm | NA/17.6 GHz | 2018 | [52] |
EA | GOS | SiO/5 | Si-slab | 100 | NA/0.056 dBm | 30 Gbps/9.3 GHz | 2020 | [36] |
EA | GOS | SiO/5 | Si-slab | 75 | NA/0.048 dBm | 50 Gbps/16 GHz | 2020 | [53] |
EA | GOS | SiO/10 | Si-slab | 100 + 50 | 1 dB·V/NA | 10 Gbps/5 GHz | 2017 | [58,59] |
EA | GOG | AlO/5 | Si-strip | 40 | NA/0.16 dBm | NA/1 GHz | 2012 | [34] |
EA | GOG | AlO/100 | Si-strip | 90 | 0.06 dB·V (D)/NA | NA/2.5 GHz | 2014 | [55] |
EA | GOG | AlO/120 | Si-strip | 30 | 0.067 dB·V (D)/NA | NA/35 GHz | 2016 | [56] |
EA | GIG | SiN/20 | Si-strip | 120 | 0.3 dB·V (D)/NA | 50 Gbps/29 GHz | 2019 | [57] |
EA | GOG | HfO/10 | Si-strip | 60 | 2.2 dB·V/NA | 40 Gbps/39 GHz | 2021 | [35] |
EA | GOS | AlO/25 | Si-ring | 5 | 0.37 dB·V (D)/NA | NA/NA | 2014 | [61] |
EA | GOS | AlO/9 | Si-ring | 50 | 1.42 dB·V (D)/NA | NA/NA | 2015 | [62] |
EA | GOG | AlO/65 | SiN-ring | 40 | 1.5 dB·V (D)/NA | 22 Gbps/30 Ghz | 2015 | [27] |
EA | GIM | hBN/50–70 | SPPs | 12 | NA/0.03 dBm | NA/1 GHz (E) | 2015 | [63] |
EA | GOG | AlO/10 | Au-slot | 4 | NA/0.13 dBm | NA/NA | 2017 | [64] |
EA | GOG | AlO/5 | SOI PhCW | 10 | NA/0.015 dBm | NA/12 GHz | 2020 | [32] |
EA | GOG | AlO/30 | SiN-strip | 100 | 1.5 dB·V/NA | 7 Gbps/3.9 GHz | 2020 | [42] |
EA | GOG | SiN/30 | SiN-ring | 40 | 0.78 dB·V (D)/NA | NA/14.7 GHz | 2021 | [60] |
EA | GOG | SiN/17 | SiN strip | 30/60/120 | 0.25/0.5/1 dB·V/NA | 20 Gbps/11.5 GHz | 2021 | [33] |
ER | GOS | AlO/5 | Si-ring | 9 | 0.27 V·cm/NA | NA/NA | 2017 | [71] |
ER | GOS | SiO/10 | Si-slab | 300 | 0.28 V·cm/NA | 10 Gbps/5 GHz | 2018 | [45] |
ER | GOS | AlO/10 | Si-slab | 40 | 0.129 V·cm/NA | NA/NA | 2018 | [67] |
ER | GOG | HfO/NA | SiN strip | 100 | 0.14 V·cm/NA | NA/0.64 GHz | 2017 | [68] |
ER | GO-TMDs | AlO/30 | Si-strip | 233 | 1.5 V·cm/NA | NA/NA | 2021 | [72] |
ER | GO-TMDs | AlO/NA | SiN-ring | 50 | 1.5 dB·V/NA | NA/NA | 2021 | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, M.; Wei, Z.; Meng, Y.; Shu, H.; Tao, Y.; Bai, B.; Wang, X. Silicon-Based Graphene Electro-Optical Modulators. Photonics 2022, 9, 82. https://doi.org/10.3390/photonics9020082
Jin M, Wei Z, Meng Y, Shu H, Tao Y, Bai B, Wang X. Silicon-Based Graphene Electro-Optical Modulators. Photonics. 2022; 9(2):82. https://doi.org/10.3390/photonics9020082
Chicago/Turabian StyleJin, Ming, Ziyi Wei, Yanfang Meng, Haowen Shu, Yuansheng Tao, Bowen Bai, and Xingjun Wang. 2022. "Silicon-Based Graphene Electro-Optical Modulators" Photonics 9, no. 2: 82. https://doi.org/10.3390/photonics9020082
APA StyleJin, M., Wei, Z., Meng, Y., Shu, H., Tao, Y., Bai, B., & Wang, X. (2022). Silicon-Based Graphene Electro-Optical Modulators. Photonics, 9(2), 82. https://doi.org/10.3390/photonics9020082