Optical Switch Based on Ge2Sb2Se4Te1-Assisted Racetrack Microring
Abstract
:1. Introduction
2. Principle and Design
2.1. Switch Structure
2.2. Switch Optimization
2.2.1. Single-Mode Waveguide
2.2.2. DC Structure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, N.; Kumar, R. Mid-infrared non-volatile silicon photonic switches using nanoscale Ge2Sb2Te5 embedded in silicon-on-insulator waveguides. Nanotechnology 2020, 31, 115207. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Zhu, Q.; Su, Y. Fast wavelength seeking in a silicon dual-ring switch based on artificial neural networks. J. Lightwave Technol. 2020, 38, 5078–5085. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Xie, Y.; Shi, Y.; Kumar, R.; Panepucci, R.R.; Dai, D. Wavelength-selective 2 × 2 optical switch based on a Ge2Sb2Te5-assisted microring. Photonics Res. 2020, 8, 1171–1176. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Li, J.; Soref, R.; Gu, T.; Hu, J. Broadband nonvolatile photonic switching based on optical phase change materials: Beyond the classical figure-of-merit. Opt. Lett. 2018, 43, 94–97. [Google Scholar] [CrossRef]
- Brunetti, G.; Marocco, G.; Benedetto, A.D. Design of a large bandwidth 2 × 2 interferometric switching cell based on a sub-wavelength grating. J. Opt. 2021, 23, 085801. [Google Scholar] [CrossRef]
- Dasmahapatra, P.; Stabile, R.; Rohit, A. Optical Crosspoint Matrix Using Broadband Resonant Switches. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 5900410. [Google Scholar] [CrossRef]
- Sun, F.; Xia, L.; Nie, C.; Qiu, C.; Tang, L.; Shen, J.; Sun, T.; Yu, L.; Wu, P.; Yin, S. An all-optical modulator based on a graphene-plasmonic slot waveguide at 1550 nm. Appl. Phys. Express 2019, 12, 042009. [Google Scholar] [CrossRef]
- Jafari, B.; Soofi, H.; Abbasian, K. Low voltage, high modulation depth graphene THz modulator employing Fabry-Perot resonance in a metal/dielectric/graphene sandwich structure. Opt. Commun. 2020, 472, 125911. [Google Scholar] [CrossRef]
- Xiao, B.; Li, Y.; Yu, X.; Cheng, J. MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection. Sens. Actuators B. Chem. 2016, 235, 103–109. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, S.; Wang, Y.; Wu, L.; Jiang, X.; Zhang, F.; Jin, X. MZI-based all-optical modulator using MXene Ti3C2Tx (T = F, O, or OH) deposited microfiber. Adv. Mater. Technol. 2019, 4, 1800532. [Google Scholar] [CrossRef]
- Moradiani, F.; Seifouri, M.; Abedi, K.; Gharakhili, F. High Extinction Ratio All-Optical Modulator Using a Vanadium-Dioxide Integrated Hybrid Plasmonic Waveguide. Plasmonics 2021, 16, 189–198. [Google Scholar] [CrossRef]
- Ooi, K.; Bai, P.; Chu, H.S.; Ang, L.K. Ultracompact Vanadium Dioxide Dual-Mode Plasmonic Waveguide Electroabsorption Modulator. Nanophotonics 2013, 2, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Soref, R.; Mu, J.; Majumdar, A.; Li, X.; Huang, W.P. Simulations of Silicon-on-Insulator Channel-Waveguide Electrooptical 2 × 2 Switches and 1 × 1 Modulators Using a Ge2 Sb2Te5 Self-Holding Layer. J. Lightwave Technol. 2015, 33, 1805–1813. [Google Scholar] [CrossRef]
- Babicheva, V.; Boltasseva, A.; Lavrinenko, A. Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 2015, 4, 165–185. [Google Scholar] [CrossRef]
- Ma, Z.; Li, Z.; Liu, K.; Ye, C.; Sorger, V.J. Indium-Tin-Oxide for High-performance Electro-optic Modulation. Nanophotonics 2015, 4, 198–213. [Google Scholar] [CrossRef]
- Lu, L.; Zhou, L.; Li, X. Low-power 2 × 2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers. Opt. Lett. 2014, 39, 1633–1636. [Google Scholar] [CrossRef]
- Koch, U.; Uhl, C.; Hettrich, H.; Fedoryshyn, Y.; Leuthold, J. A monolithic bipolar CMOS electronic-plasmonic high-speed transmitter. Nat. Electron. 2020, 3, 338–345. [Google Scholar] [CrossRef]
- Heni, W.; Haffner, C.; Baeuerle, B.; Fedoryshyn, Y.; Josten, A.; Hillerkuss, D.; Niegemann, J.; Melikyan, A.; Kohl, M.; Elder, D.L.; et al. 108 Gbit/s Plasmonic Mach-Zehnder Modulator with > 70-GHz Electrical Bandwidth. J. Lightwave Technol. 2016, 34, 393–400. [Google Scholar] [CrossRef]
- Fang, Q.; Song, J.F.; Liow, T.Y.; Hong, C.; Kwong, D.L. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technol. Lett. 2011, 23, 525–527. [Google Scholar] [CrossRef]
- Lu, Z.; Murray, K.; Jayatilleka, H.; Chrostowski, L. Michelson Interferometer Thermo-optic Switch on SOI with a 50 Microwatt Power Consumption. IEEE Photonics Technol. Lett. 2015, 27, 2319–2322. [Google Scholar]
- Chen, W.; Lu, H.; Li, S. Experimental demonstration of a flexible-grid 1 × 2 wavelength-selective switch based on silicon microring resonators. Opt. Lett. 2019, 44, 403–406. [Google Scholar] [CrossRef]
- Zhang, Y.; Chou, J.B.; Li, J. Extreme Broadband Transparent Optical Phase Change Materials for High-Performance Nonvolatile Photonics. Nat. Commun. 2019, 10, 4279. [Google Scholar] [CrossRef]
- Ophir, N.; Mineo, C.; Mountain, D.; Bergman, K. Silicon photonic microring links for high-bandwidth-density, low-power chip I/O. IEEE Micro 2013, 33, 54–67. [Google Scholar] [CrossRef]
- Dong, P.; Qian, W.; Liang, H.; Shafiiha, R.; Feng, D.; Li, G.; Cunningham, J.; Krishnamoorthy, A.; Asghari, M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt. Express 2010, 18, 20298–20304. [Google Scholar] [CrossRef]
- Rudé, M.; Pello, J.; Simpson, R.E.; Osmond, J.; Roelkens, G.; Joe, J.G.M.; Tol, V.; Pruneri, V. Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Appl. Phys. Lett. 2013, 103, 141119. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Khanolkar, A.; Xu, P.; Colburn, S.; Deshmukh, S.; Myers, J.; Frantz, J.; Pop, E.; Hendrickson, J.; Doylend, J.; et al. GST-on-silicon hybrid nanophotonic integrated circuits: A non-volatile quasi-continuously reprogrammable platform. Opt. Mater. Express 2018, 8, 1551–1561. [Google Scholar] [CrossRef]
- Stegmaier, M.; Ríos, C.; Bhaskaran, H.; Wright, C.D.; Pernice, W.H.P. Nonvolatile all-optical 1 × 2 switch for chip scale photonic networks. Adv. Opt. Mater. 2017, 5, 1600346. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, L.; Xu, J.; Lu, L.; Chen, J.; Rahman, B. All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material. Opt. Lett. 2018, 43, 5539–5542. [Google Scholar] [CrossRef]
- Porzi, C.; Falconi, F.; Parca, G. Fast-Reconfigurable Microwave Photonics Phase Shifter Using Silicon Microring Resonators. IEEE J. Quantum Electron. 2021, 57, 0600409. [Google Scholar] [CrossRef]
- Taufiqurrahman, S.; Dicky, G.; Estu, T.T. Free Spectral Range and Quality Factor Enhancement of Multi-Path Optical Ring Resonator for Sensor Application. ISFAP AIP Conf. Proc. 2019, 2256, 020003. [Google Scholar]
- Suzuki, K.; Konoike, R.; Yokoyama, N. Nonduplicate Polarization-Diversity 32 × 32 Silicon Photonics Switch Based on a SiN/Si Double-Layer Platform. J. Lightwave Technol. 2020, 38, 226–232. [Google Scholar] [CrossRef]
- Konoike, R.; Suzuki, K.; Tanizawa, K. SiN/Si double-layer platform for ultralow-crosstalk multiport optical switches. Opt. Express 2019, 27, 21130–21141. [Google Scholar] [CrossRef]
- Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 2015, 9, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Ríos, C.; Stegmaier, M.; Cheng, Z.; Youngblood, N.; Wright, C.D.; Pernice, W.H.; Bhaskaran, H. Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics. Opt. Mater. Express 2018, 8, 2455–2470. [Google Scholar] [CrossRef]
- Youngblood, N.; Ríos, C.; Gemo, E.; Feldmann, J.; Cheng, Z.; Baldycheva, A.; Pernice, W.H.; Wright, C.D.; Bhaskaran, H. Tunable volatility of Ge2Sb2Te5 in integrated photonics. Adv. Funct. Mater. 2019, 29, 1807571. [Google Scholar] [CrossRef] [Green Version]
- Kato, K.; Kuwahara, M.; Kawashima, H.; Tsuruoka, T.; Tsuda, H. Current-driven phase-change optical gate switch using indium–tin–oxide heater. Appl. Phys. Express. 2017, 10, 072201. [Google Scholar] [CrossRef]
- Farmakidis, N.; Youngblood, N.; Li, X.; Tan, J.; Swett, J.L.; Cheng, Z.; Wright, C.D.; Pernice, W.H.; Bhaskaran, H. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv. 2019, 5, 2687. [Google Scholar] [CrossRef] [Green Version]
- Leonardis, F.D.; Soref, R.; Passaro, V.M.; Zhang, Y.; Hu, J. Broadband electro-optical crossbar switches using low-loss Ge2Sb2Te5 phase change material. J. Lightwave Technol. 2019, 37, 3183–3191. [Google Scholar] [CrossRef]
O-PCM | Structure/Effect | IL | BW (nm) | λ (nm) | ER (dB) | Ref |
---|---|---|---|---|---|---|
GSST | DC | 0.4 dB/40 μm 0.06 dB/40 μm | NA | 1550 | NA | 4 |
GST | MRR | 0.9 dB/2 dB | NA | 1563 | ~20 | 3 |
GST | MRR | 2.5 dB | ~0.1 | 1550 | 12.5 | 25 |
VO2 | Plasmonic | 4.15 dB | 76 | 1550 | 18 | 11 |
This work (GSST) | MRR | 0. 862 dB/100 μm 0. 187 dB/150 μm | ~1 | 1547.4 | ~18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liu, S.; Liu, T.; Gao, Y.; Yin, Y.; Sun, X.; Zhang, D. Optical Switch Based on Ge2Sb2Se4Te1-Assisted Racetrack Microring. Photonics 2022, 9, 117. https://doi.org/10.3390/photonics9020117
Xu Y, Liu S, Liu T, Gao Y, Yin Y, Sun X, Zhang D. Optical Switch Based on Ge2Sb2Se4Te1-Assisted Racetrack Microring. Photonics. 2022; 9(2):117. https://doi.org/10.3390/photonics9020117
Chicago/Turabian StyleXu, Yan, Songyue Liu, Tingyu Liu, Yang Gao, Yuexin Yin, Xiaoqiang Sun, and Daming Zhang. 2022. "Optical Switch Based on Ge2Sb2Se4Te1-Assisted Racetrack Microring" Photonics 9, no. 2: 117. https://doi.org/10.3390/photonics9020117
APA StyleXu, Y., Liu, S., Liu, T., Gao, Y., Yin, Y., Sun, X., & Zhang, D. (2022). Optical Switch Based on Ge2Sb2Se4Te1-Assisted Racetrack Microring. Photonics, 9(2), 117. https://doi.org/10.3390/photonics9020117