Prospects of Relativistic Flying Mirrors for Ultra-High-Field Science
Abstract
:1. Introduction
2. Theoretical Model
2.1. Ideal Moving Mirror
2.2. Practical Moving (Flying) Mirror Implementation
2.3. Limitations of Relativistic Flying Mirrors
3. Experimental Demonstration
3.1. Relativistic Flying Mirrors
3.2. Burst Intensification of Stimulated Emission of Radiation
3.3. Measurement of Plasma Waves
4. Applications
4.1. Intensification
4.2. Photon–Photon Scattering
4.3. Ultrashort X-ray Pulse Generation
4.4. Analog Black Holes
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BISER | Burst intensification by singularity emitting radiation |
CCD | Charge-coupled device |
FDI | Frequency domain interferometry |
FDH | Frequency domain holography |
PIC | Particle-in-cell |
RFM | Relativistic flying mirror |
SRLD | Square-root Lorentzian distribution |
UHFS | Ultra-high-field science |
QED | Quantum electrodynamics |
References
- Strickland, D.; Mourou, G. Compression of Amplified Chirped Optical Pulses. Opt. Commun. 1985, 55, 447–449. [Google Scholar] [CrossRef]
- Mourou, G.A.; Tajima, T.; Bulanov, S.V. Optics in the relativistic regime. Rev. Mod. Phys. 2006, 78, 309–371. [Google Scholar] [CrossRef] [Green Version]
- Piazza, A.D.; Mueller, C.; Hatsagortsyan, K.Z.; Keitel, C.H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 2012, 84, 1177–1228. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.W.; Kim, Y.G.; Choi, I.W.; Sung, J.H.; Lee, H.W.; Lee, S.K.; Nam, C.H. Realization of laser intensity over 1023 W/cm2. Optica 2021, 8, 630. [Google Scholar] [CrossRef]
- Bulanov, S.V.; Esirkepov, T.Z.; Hayashi, Y.; Kando, M.; Kiriyama, H.; Koga, J.K.; Kondo, K.; Kotaki, H.; Pirozhkov, A.S.; Bulanov, S.S.; et al. Extreme field science. Plasma Phys. Control. Fusion 2011, 53, 124025. [Google Scholar] [CrossRef]
- Bamber, C.; Boege, S.J.; Koffas, T.; Kotseroglou, T.; Melissinos, A.C.; Meyerhofer, D.D.; Reis, D.A.; Ragg, W.; Bula, C.; McDonald, K.T.; et al. Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 1999, 60, 092004. [Google Scholar] [CrossRef] [Green Version]
- Bulanov, S.S.; Mur, V.D.; Narozhny, N.B.; Nees, J.; Popov, V.S. Multiple Colliding Electromagnetic Pulses: A Way to Lower the Threshold of e+e− Pair Production from Vacuum. Phys. Rev. Lett. 2010, 104, 220404. [Google Scholar] [CrossRef] [Green Version]
- Dunne, G.V.; Gies, H.; Schützhold, R. Catalysis of Schwinger vacuum pair production. Phys. Rev. D 2009, 80, 111301. [Google Scholar] [CrossRef] [Green Version]
- Bulanov, S.; Esirkepov, T.Z.; Tajima, T. Light intensification towards the Schwinger limit. Phys. Rev. Lett. 2003, 91, 085001. [Google Scholar] [CrossRef]
- Panchenko, A.V.; Esirkepov, T.Z.; Pirozhkov, A.S.; Kando, M.; Kamenets, F.F.; Bulanov, S.V. Interaction of electromagnetic waves with caustics in plasma flows. Phys. Rev. E 2008, 78, 056402. [Google Scholar] [CrossRef]
- Bulanov, S.V.; Esirkepov, T.Z.; Kando, M.; Pirozhkov, A.S.; Rosanov, N.N. Relativistic mirrors in plasmas. Novel results and perspectives. Physics-Uspekhi 2013, 56, 429–464. [Google Scholar] [CrossRef]
- Einstein, A. Zur Elektrodynamik bewegter Körper. Ann. Der Phys. 1905, 322, 891–921. [Google Scholar] [CrossRef]
- Kando, M.; Esirkepov, T.; Koga, J.; Pirozhkov, A.; Bulanov, S. Coherent, Short-Pulse X-ray Generation via Relativistic Flying Mirrors. Quantum Beam Sci. 2018, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Valenta, P.; Esirkepov, T.Z.; Koga, J.K.; Pirozhkov, A.S.; Kando, M.; Liu, Y.K.; Fang, P.; Chen, P.; Mu, J.; Korn, G.; et al. Recoil effects on reflection from relativistic mirrors in laser plasmas. Phys. Plasmas 2020, 27, 032109. [Google Scholar] [CrossRef]
- Liu, Y.-K.; Chen, P.; Fang, Y. Reflectivity and spectrum of relativistic flying plasma mirrors. Phys. Plasmas 2021, 28, 103301. [Google Scholar] [CrossRef]
- Bulanov, S.V.; Esirkepov, T.Z.; Kando, M.; Koga, J.K.; Pirozhkov, A.S.; Nakamura, T.; Bulanov, S.S.; Schroeder, C.B.; Esarey, E.; Califano, F.; et al. On the breaking of a plasma wave in a thermal plasma. II. Electromagnetic wave interaction with the breaking plasma wave. Phys. Plasmas 2012, 19, 113103. [Google Scholar] [CrossRef] [Green Version]
- Jeong, T.M.; Bulanov, S.V.; Valenta, P.; Korn, G.; Esirkepov, T.Z.; Koga, J.K.; Pirozhkov, A.S.; Kando, M.; Bulanov, S.S. Relativistic flying laser focus by a laser-produced parabolic plasma mirror. Phys. Rev. A 2021, 104, 053533. [Google Scholar] [CrossRef]
- Kando, M.; Fukuda, Y.; Pirozhkov, A.S.; Ma, J.; Daito, I.; Chen, L.; Esirkepov, T.Z.; Ogura, K.; Homma, T.; Hayashi, Y.; et al. Demonstration of laser-frequency upshift by electron-density modulations in a plasma wakefield. Phys. Rev. Lett. 2007, 99, 135001. [Google Scholar] [CrossRef]
- Pirozhkov, A.S.; Ma, J.; Kando, M.; Esirkepov, T.Z.; Fukuda, Y.; Chen, L.M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; et al. Frequency multiplication of light back-reflected from a relativistic wake wave. Phys. Plasmas 2007, 14, 123106. [Google Scholar] [CrossRef]
- Kando, M.; Pirozhkov, A.S.; Kawase, K.; Esirkepov, T.Z.; Fukuda, Y.; Kiriyama, H.; Okada, H.; Daito, I.; Kameshima, T.; Hayashi, Y.; et al. Enhancement of Photon Number Reflected by the Relativistic Flying Mirror. Phys. Rev. Lett. 2009, 103, 235003. [Google Scholar] [CrossRef]
- Kando, M.; Pirozhkov, A.S.; Fukuda, Y.; Esirkepov, T.Z.; Daito, I.; Kawase, K.; Ma, J.L.; Chen, L.M.; Hayashi, Y.; Mori, M.; et al. Experimental studies of the high and low frequency electromagnetic radiation produced from nonlinear laser-plasma interactions. Eur. Phys. J. D 2009, 55, 465–474. [Google Scholar] [CrossRef]
- Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Z.; Gallegos, P.; Ahmed, H.; Ragozin, E.N.; Faenov, A.Y.; Pikuz, T.A.; Kawachi, T.; Sagisaka, A.; et al. Soft-X-ray Harmonic Comb from Relativistic Electron Spikes. Phys. Rev. Lett. 2012, 108, 135004. [Google Scholar] [CrossRef] [Green Version]
- Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Z.; Gallegos, P.; Ahmed, H.; Ragozin, E.N.; Faenov, A.Y.; Pikuz, T.A.; Kawachi, T.; Sagisaka, A.; et al. High order harmonics from relativistic electron spikes. New J. Phys. 2014, 16, 093003. [Google Scholar] [CrossRef]
- Sagisaka, A.; Ogura, K.; Esirkepov, T.; Neely, D.; Pikuz, T.; Koga, J.; Fukuda, Y.; Kotaki, H.; Hayashi, Y.; Gonzalez-Izquierdo, B.; et al. Observation of Burst Intensification by Singularity Emitting Radiation generated from relativistic plasma with a high-intensity laser. High Energy Density Phys. 2020, 36, 100751. [Google Scholar] [CrossRef]
- Pirozhkov, A.S.; Esirkepov, T.Z.; Pikuz, T.A.; Faenov, A.Y.; Ogura, K.; Hayashi, Y.; Kotaki, H.; Ragozin, E.N.; Neely, D.; Kiriyama, H.; et al. Burst intensification by singularity emitting radiation in multi-stream flows. Sci. Rep. 2017, 7, 17968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirozhkov, A.S.; Esirkepov, T.Z.; Pikuz, T.A.; Faenov, A.Y.; Sagisaka, A.; Ogura, K.; Hayashi, Y.; Kotaki, H.; Ragozin, E.N.; Neely, D.; et al. Laser Requirements for High-Order Harmonic Generation by Relativistic Plasma Singularities. Quantum Beam Sci. 2018, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Marquès, J.R.; Geindre, J.P.; Amiranoff, F.; Audebert, P.; Gauthier, J.C.; Antonetti, A.; Grillon, G. Temporal and Spatial Measurements of the Electron Density Perturbation Produced in the Wake of an Ultrashort Laser Pulse. Phys. Rev. Lett. 1996, 76, 3566–3569. [Google Scholar] [CrossRef]
- Siders, C.W.; Blanc, S.P.L.; Fisher, D.; Tajima, T.; Downer, M.C.; Babine, A.; Stepanov, A.; Sergeev, A. Laser Wakefield Excitation and Measurement by Femtosecond Longitudinal Interferometry. Phys. Rev. Lett. 1996, 76, 3570–3573. [Google Scholar] [CrossRef]
- Matlis, N.H.; Reed, S.; Bulanov, S.S.; Chvykov, V.; Kalintchenko, G.; Matsuoka, T.; Rousseau, P.; Yanovsky, V.; Maksimchuk, A.; Kalmykov, S.; et al. Snapshots of laser wakefields. Nat. Phys. 2006, 2, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Buck, A.; Nicolai, M.; Schmid, K.; Sears, C.M.S.; Sävert, A.; Mikhailova, J.M.; Krausz, F.; Kaluza, M.C.; Veisz, L. Real-time observation of laser-driven electron acceleration. Nat. Phys. 2011, 7, 543–548. [Google Scholar] [CrossRef]
- Sävert, A.; Mangles, S.P.D.; Schnell, M.; Siminos, E.; Cole, J.M.; Leier, M.; Reuter, M.; Schwab, M.B.; Möller, M.; Poder, K.; et al. Direct Observation of the Injection Dynamics of a Laser Wakefield Accelerator Using Few-Femtosecond Shadowgraphy. Phys. Rev. Lett. 2015, 115, 055002. [Google Scholar] [CrossRef] [Green Version]
- Esirkepov, T.Z.; Mu, J.; Gu, Y.; Jeong, T.M.; Valenta, P.; Klimo, O.; Koga, J.K.; Kando, M.; Neely, D.; Korn, G.; et al. Optical probing of relativistic plasma singularities. Phys. Plasmas 2020, 27, 052103. [Google Scholar] [CrossRef]
- Kotov, A.; Esirkepov, T.; Soloviev, A.; Sagisaka, A.; Ogura, K.; Bierwage, A.; Kando, M.; Kiriyama, H.; Starodubtsev, M.; Khazanov, E.; et al. Enhanced diagnostics of radiating relativistic singularities and BISER by nonlinear post-compression of optical probe pulse. J. Instrum. 2022, 17, P07035. [Google Scholar] [CrossRef]
- Wan, Y.; Seemann, O.; Tata, S.; Andriyash, I.A.; Smartsev, S.; Kroupp, E.; Malka, V. Direct observation of relativistic broken plasma waves. Nat. Phys. 2022, 18, 1186–1190. [Google Scholar] [CrossRef]
- Bulanov, S.S.; Maksimchuk, A.; Schroeder, C.B.; Zhidkov, A.G.; Esarey, E.; Leemans, W.P. Relativistic spherical plasma waves. Phys. Plasmas 2012, 19, 020702. [Google Scholar] [CrossRef] [Green Version]
- Koga, J.K.; Bulanov, S.V.; Esirkepov, T.Z.; Pirozhkov, A.S.; Kando, M.; Rosanov, N.N. Possibility of measuring photon–photon scattering via relativistic mirrors. Phys. Rev. A 2012, 86, 053823. [Google Scholar] [CrossRef]
- Chen, P.; Mourou, G. Accelerating Plasma Mirrors to Investigate the Black Hole Information Loss Paradox. Phys. Rev. Lett. 2017, 118, 045001-5. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Mourou, G. Trajectory of a flying plasma mirror traversing a target with density gradient. Phys. Plasmas 2020, 27, 123106. [Google Scholar] [CrossRef]
- Lobet, M.; Kando, M.; Koga, J.K.; Esirkepov, T.Z.; Nakamura, T.; Pirozhkov, A.S.; Bulanov, S.V. Controlling the generation of high frequency electromagnetic pulses with relativistic flying mirrors using an inhomogeneous plasma. Phys. Lett. A 2013, 377, 1114–1118. [Google Scholar] [CrossRef]
- Collaboration, A.; Chen, P.; Mourou, G.; Besancon, M.; Fukuda, Y.; Glicenstein, J.F.; Nam, J.; Lin, C.E.; Lin, K.N.; Liu, S.X.; et al. AnaBHEL (Analog Black Hole Evaporation via Lasers) Experiment: Concept, Design, and Status. arXiv 2022, arXiv:2205.12195. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kando, M.; Pirozhkov, A.S.; Koga, J.K.; Esirkepov, T.Z.; Bulanov, S.V. Prospects of Relativistic Flying Mirrors for Ultra-High-Field Science. Photonics 2022, 9, 862. https://doi.org/10.3390/photonics9110862
Kando M, Pirozhkov AS, Koga JK, Esirkepov TZ, Bulanov SV. Prospects of Relativistic Flying Mirrors for Ultra-High-Field Science. Photonics. 2022; 9(11):862. https://doi.org/10.3390/photonics9110862
Chicago/Turabian StyleKando, Masaki, Alexander S. Pirozhkov, James K. Koga, Timur Zh. Esirkepov, and Sergei V. Bulanov. 2022. "Prospects of Relativistic Flying Mirrors for Ultra-High-Field Science" Photonics 9, no. 11: 862. https://doi.org/10.3390/photonics9110862
APA StyleKando, M., Pirozhkov, A. S., Koga, J. K., Esirkepov, T. Z., & Bulanov, S. V. (2022). Prospects of Relativistic Flying Mirrors for Ultra-High-Field Science. Photonics, 9(11), 862. https://doi.org/10.3390/photonics9110862