Laser Method for Studying Temperature Distribution within Yb:YAG Active Elements
Abstract
1. Introduction
2. Laser Thermometry Method
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Chi, H.; Baumgarten, C.; Dehne, K.; Meadows, A.R.; Davenport, A.; Murray, G.; Reagan, B.A.; Menoni, C.S.; Rocca, J.J. 1.1 J Yb:YAG picosecond laser at 1 kHz repetition rate. Opt. Lett. 2020, 45, 6615–6618. [Google Scholar] [CrossRef]
- Herkommer, C.; Krötz, P.; Jung, R.; Klingebiel, S.; Wandt, C.; Bessing, R.; Walch, P.; Produit, T.; Michel, K.; Bauer, D.; et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research. Opt. Express 2020, 28, 30164–30173. [Google Scholar] [CrossRef]
- Nubbemeyer, T.; Kaumanns, M.; Ueffing, M.; Gorjan, M.; Alismail, A.; Fattahi, H.; Brons, J.; Pronin, O.; Barros, H.G.; Major, Z.; et al. 1 kW, 200 mJ picosecond thin-disk laser system. Opt. Lett. 2017, 42, 1381–1384. [Google Scholar] [CrossRef]
- Ogino, J.; Tokita, S.; Kitajima, S.; Yoshida, H.; Li, Z.; Motokoshi, S.; Morio, N.; Tsubakimoto, K.; Fujioka, K.; Kodama, R.; et al. 10-J, 100-Hz conduction-cooled active-mirror laser. Opt. Contin. 2022, 1, 1270–1277. [Google Scholar] [CrossRef]
- Chvykov, V.; Chi, H.; Wang, Y.; Dehne, K.; Berrill, M.; Rocca, J.J. Demonstration of a side-pumped cross-seeded thin-slab pre-amplifier for high-power Ti:Sa laser systems. Opt. Lett. 2022, 47, 3463–3466. [Google Scholar] [CrossRef]
- Kretschmar, M.; Tuemmler, J.; Schütte, B.; Hoffmann, A.; Senfftleben, B.; Mero, M.; Sauppe, M.; Rupp, D.; Vrakking, M.J.J.; Will, I.; et al. Thin-disk laser-pumped OPCPA system delivering 4.4 TW few-cycle pulses. Opt. Express 2020, 28, 34574–34585. [Google Scholar] [CrossRef]
- Hubka, Z.; Antipenkov, R.; Boge, R.; Erdman, E.; Greco, M.; Green, J.T.; Horacek, M.; Majer, K.; Mazanec, T.; Mazurek, P.; et al. 120 mJ, 1 kHz, picosecond laser at 515 nm. Opt. Lett. 2021, 46, 5655–5658. [Google Scholar] [CrossRef]
- Fan, G.; Legare, K.; Cardin, V.; Xie, X.; Safaei, R.; Kaksis, E.; Andriukaitis, G.; Pugzlys, A.; Schmidt, B.E.; Wolf, J.P.; et al. Ultrafast magnetic scattering on ferrimagnets enabled by a bright Yb-based soft x-ray source. Optica 2022, 9, 399–407. [Google Scholar] [CrossRef]
- Boltaev, G.S.; Kim, V.V.; Iqbal, M.; Abbasi, N.A.; Yalishev, V.S.; Ganeev, R.A.; Alnaser, A.S. Application of 150 kHz Laser for High-Order Harmonic Generation in Different Plasmas. Photonics 2020, 7, 66. [Google Scholar] [CrossRef]
- Koliyadu, J.C.P.; Künzel, S.; Wodzinski, T.; Keitel, B.; Duarte, J.; Williams, G.O.; João, C.P.; Pires, H.; Hariton, V.; Galletti, M.; et al. Optimization and Characterization of High-Harmonic Generation for Probing Solid Density Plasmas. Photonics 2017, 4, 25. [Google Scholar] [CrossRef]
- Produit, T.; Walch, P.; Herkommer, C.; Mostajabi, A.; Moret, M.; Andral, U.; Sunjerga, A.; Azadifar, M.; André, Y.B.; Mahieu, B.; et al. The laser lightning rod project. Eur. Phys. J. Appl. Phys. 2021, 93, 10504. [Google Scholar] [CrossRef]
- Higginson, A.; Wang, Y.; Chi, H.; Goffin, A.; Larkin, I.; Milchberg, H.M.; Rocca, J.J. Wake dynamics of air filaments generated by high-energy picosecond laser pulses at 1 kHz repetition rate. Opt. Lett. 2021, 46, 5449–5452. [Google Scholar] [CrossRef]
- Mason, P.D.; Fitton, M.; Lintern, A.; Banerjee, S.; Ertel, K.; Davenne, T.; Hill, J.; Blake, S.P.; Phillips, P.J.; Butcher, T.J.; et al. Scalable design for a high energy cryogenic gas cooled diode pumped laser amplifier. Appl. Opt. 2015, 54, 4227–4238. [Google Scholar] [CrossRef]
- Petrov, V.A.; Petrov, V.V.; Kuptsov, G.V.; Laptev, A.V.; Galutskiy, V.V.; Stroganova, E.V. YAG:Yb crystal with non-linear doping ions distribution as promising active element for high average power laser systems. Laser Phys. 2021, 31, 035003. [Google Scholar] [CrossRef]
- Azrakantsyan, M.; Albach, D.; Ananyan, N.; Gevorgyan, V.; Chanteloup, J.-C. Yb3+:YAG crystal growth with controlled doping distribution. Opt. Mater. Express 2012, 2, 20–30. [Google Scholar] [CrossRef]
- Chénais, S.; Forget, S.; Druon, F.; Balembois, F.; Georges, P. Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG. Appl. Phys. 2004, 79, 221–224. [Google Scholar] [CrossRef]
- Tamer, I.; Keppler, S.; Körner, J.; Hornung, M.; Hellwing, M.; Schorcht, F.; Hein, J.; Kaluza, M. Modeling of the 3D spatio-temporal thermal profile of joule-class Yb3+-based laser amplifiers. High Power Laser Sci. Eng. 2019, 7, e42. [Google Scholar] [CrossRef]
- Boudeile, J.; Didierjean, J.; Camy, P.; Doualan, J.L.; Benayad, A.; Ménard, V.; Moncorgé, R.; Druon, F.; Balembois, F.; Georges, P. Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping. Opt. Express 2008, 16, 10098–10109. [Google Scholar] [CrossRef]
- Didierjean, J.; Herault, E.; Balembois, F.; Georges, P. Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals. Opt. Express 2008, 16, 8995–9010. [Google Scholar] [CrossRef]
- Petit, J.; Viana, B.; Goldner, P. Internal temperature measurement of an ytterbium doped material under laser operation. Opt. Express 2011, 19, 1138–1146. [Google Scholar] [CrossRef]
- Xu, C.; Huang, Y.; Lin, Y.; Huang, J.; Gong, X.; Luo, Z.; Chen, Y. Real-time measurement of temperature distribution inside a gain medium of a diode-pumped Er3+/Yb3+ 1.55 μm laser. Opt. Lett. 2017, 42, 3383–3386. [Google Scholar] [CrossRef]
- Furuse, H.; Kawanaka, J.; Miyanaga, N.; Chosrowjan, H.; Fujita, M.; Takeshita, K.; Izawa, Y. Output characteristics of high power cryogenic Yb:YAG TRAM laser oscillator. Opt. Express 2012, 20, 21739–21748. [Google Scholar] [CrossRef]
- Chi, H.; Dehne, K.A.; Baumgarten, C.M.; Wang, H.; Yin, L.; Reagan, B.A.; Rocca, J.J. In situ 3-D temperature mapping of high average power cryogenic laser amplifiers. Opt. Express 2018, 26, 5240–5252. [Google Scholar] [CrossRef]
- Demirbas, U.; Thesinga, J.; Kellert, M.; Reuter, S.; Kärtner, F.X.; Pergament, M. Error analysis of contactless optical temperature probing methods for cryogenic Yb:YAG. Appl. Phys. 2021, 127, 112. [Google Scholar] [CrossRef]
- Demirbas, U.; Thesinga, J.; Kellert, M.; Kärtner, F.X.; Pergament, M. Comparison of different in situ optical temperature probing techniques for cryogenic Yb:YLF. Opt. Mater. Express 2020, 10, 3403–3413. [Google Scholar] [CrossRef]
- Körner, J.; Yue, F.; Hein, J.; Kaluza, M.C. Spatially and temporally resolved temperature measurement in laser media. Opt. Lett. 2016, 41, 2525–2528. [Google Scholar] [CrossRef]
- Kuptsov, G.V.; Petrov, V.A.; Petrov, V.V.; Laptev, A.V.; Konovalova, A.O.; Kirpichnikov, A.V.; Pestryakov, E.V. Laser amplification in an Yb:YAG active mirror with a significant temperature gradient. Quantum Electron. 2021, 51, 679–682. [Google Scholar] [CrossRef]
- Petrov, V.V.; Kuptsov, G.V.; Nozdrina, A.I.; Petrov, V.A.; Laptev, A.V.; Kirpichnikov, A.V.; Pestryakov, E.V. Contactless method for studying temperature within the active element of a multidisk cryogenic amplifier. Quantum Electron. 2019, 49, 358–361. [Google Scholar] [CrossRef]
- Petrov, V.V.; Petrov, V.A.; Kuptsov, G.V.; Laptev, A.V.; Kirpichnikov, A.V.; Pestryakov, E.V. Modelling of the laser amplification process with allowance for the effect of the temperature distribution in an Yb:YAG gain element on the thermophysical and lasing characteristics of the medium. Quantum Electron. 2020, 50, 315–320. [Google Scholar] [CrossRef]
- Körner, J.; Krüger, M.; Reiter, J.; Münzer, A.; Hein, J.; Kaluza, M.C. Temperature dependent spectroscopic study of Yb3+-doped KG(WO4)2, KY(WO4)2, YAlO3 and YLiF4 for laser applications. Opt. Mater. Express 2020, 10, 2425–2438. [Google Scholar] [CrossRef]
- Püschel, S.; Kalusniak, S.; Kränkel, C.; Tanaka, H. Temperature-dependent radiative lifetime of Yb:YLF: Refined cross sections and potential for laser cooling. Opt. Express 2021, 29, 11106–11120. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, U.; Thesinga, J.; Kellert, M.; Kärtner, F.X.; Pergament, M. Detailed investigation of absorption, emission and gain in Yb:YLF in the 78–300 K range. Opt. Mater. Express 2021, 11, 250–272. [Google Scholar] [CrossRef]
- Körner, J.; Jambunathan, V.; Hein, J.; Seifert, R.; Loeser, M.; Siebold, M.; Schramm, U.; Sikocinski, P.; Lucianetti, A.; Mocek, T.; et al. Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures. Appl. Phys. 2014, 116, 75–81. [Google Scholar] [CrossRef]
- Banerjee, S.; Koerner, J.; Siebold, M.; Yang, Q.; Ertel, K.; Mason, P.D.; Phillips, J.; Loeser, M.; Zhang, H.; Lu, S.; et al. Temperature dependent emission and absorption cross section of Yb3+ doped yttrium lanthanum oxide (YLO) ceramic and its application in diode pumped amplifier. Opt. Express 2013, 21, A726–A734. [Google Scholar] [CrossRef]
- Šulc, J.; Němec, M.; Jelínková, H.; Nejezchleb, K.; Škoda, V. Temperature influence on microchip lasers based on Nd:YAG crystal. Proc. SPIE 2019, 10896, 303–312. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuptsov, G.V.; Konovalova, A.O.; Petrov, V.A.; Laptev, A.V.; Atuchin, V.V.; Petrov, V.V. Laser Method for Studying Temperature Distribution within Yb:YAG Active Elements. Photonics 2022, 9, 805. https://doi.org/10.3390/photonics9110805
Kuptsov GV, Konovalova AO, Petrov VA, Laptev AV, Atuchin VV, Petrov VV. Laser Method for Studying Temperature Distribution within Yb:YAG Active Elements. Photonics. 2022; 9(11):805. https://doi.org/10.3390/photonics9110805
Chicago/Turabian StyleKuptsov, Gleb V., Alyona O. Konovalova, Vladimir A. Petrov, Alexey V. Laptev, Victor V. Atuchin, and Victor V. Petrov. 2022. "Laser Method for Studying Temperature Distribution within Yb:YAG Active Elements" Photonics 9, no. 11: 805. https://doi.org/10.3390/photonics9110805
APA StyleKuptsov, G. V., Konovalova, A. O., Petrov, V. A., Laptev, A. V., Atuchin, V. V., & Petrov, V. V. (2022). Laser Method for Studying Temperature Distribution within Yb:YAG Active Elements. Photonics, 9(11), 805. https://doi.org/10.3390/photonics9110805